Electrostatic control of thermoelectricity in molecular junctions


Molecular junctions hold significant promise for efficient and high-power-output thermoelectric energy conversion1,2,3. Recent experiments have probed the thermoelectric properties of molecular junctions4,5,6,7. However, electrostatic control of thermoelectric properties via a gate electrode has not been possible due to technical challenges in creating temperature differentials in three-terminal devices. Here, we show that extremely large temperature gradients (exceeding 1 × 109K m−1) can be established in nanoscale gaps bridged by molecules, while simultaneously controlling their electronic structure via a gate electrode. Using this platform, we study prototypical Au–biphenyl-4,4′-dithiol–Au and Au–fullerene–Au junctions to demonstrate that the Seebeck coefficient and the electrical conductance of molecular junctions can be simultaneously increased by electrostatic control. Moreover, from our studies of fullerene junctions, we show that thermoelectric properties can be significantly enhanced when the dominant transport orbital is located close to the chemical potential (Fermi level) of the electrodes. These results illustrate the intimate relationship between the thermoelectric properties and charge transmission characteristics of molecular junctions and should enable systematic exploration of the recent computational predictions1,2,3 that promise extremely efficient thermoelectric energy conversion in molecular junctions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental platform for tuning the thermoelectric properties of molecular junctions.
Figure 2: Effect of tuning the electronic structure on the thermoelectric properties of Au–BPDT–Au junctions.
Figure 3: Effect of tuning the electronic structure on the thermoelectric properties of Au-C60-Au junctions.


  1. 1

    Karlström, O., Linke, H., Karlström, G. & Wacker, A. Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011).

    Article  Google Scholar 

  2. 2

    Finch, C. M., García-Suárez, V. M. & Lambert, C. J. Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009).

    Article  Google Scholar 

  3. 3

    Bergfield, J. P., Solis, M. A. & Stafford, C. A. Giant thermoelectric effect from transmission supernodes. ACS Nano 4, 5314–5320 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Reddy, P., Jang, S. Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Widawsky, J. R., Darancet, P., Neaton, J. B. & Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Evangeli, C. et al. Engineering the thermopower of C60 molecular junctions. Nano Lett. 13, 2141–2145 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Guo, S. Y., Zhou, G. & Tao, N. J. Single molecule conductance, thermopower, and transition voltage. Nano Lett. 13, 4326–4332 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Lee, W. et al. Heat dissipation in atomic-scale junctions. Nature 498, 209–212 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Choi, S. H., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Xu, B. Q. & Tao, N. J. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Liang, W. J., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Song, H. et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Yu, L. H. & Natelson, D. The Kondo effect in C60 single-molecule transistors. Nano Lett. 4, 79–83 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Perrin, M. L. et al. Large tunable image-charge effects in single-molecule junctions. Nature Nanotech. 8, 282–287 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010).

    Google Scholar 

  17. 17

    Bergfield, J. P., Solomon, G. C., Stafford, C. A. & Ratner, M. A. Novel quantum interference effects in transport through molecular radicals. Nano Lett. 11, 2759–2764 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Paulsson, M. & Datta, S. Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403(R) (2003).

    Article  Google Scholar 

  20. 20

    Ke, S. H., Yang, M., Curtarolo, S. & Baranger, H. U. Thermopower of molecular junctions: an ab initio study. Nano Lett. 9, 1011–1014 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Kim, K., Jeong, W., Lee, W. & Reddy, P. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. ACS Nano 6, 4248–4257 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Jeong, W., Kim, K., Kim, Y., Lee, W. & Reddy, P. Characterizaion of nanoscale temperature fields during electromigration of nanowires. Sci. Rep. 4, 4975 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Bürkle, M. et al. Conduction mechanisms in biphenyl-dithiol single-molecule junctions. Phys. Rev. B 85, 075417 (2012).

    Article  Google Scholar 

  24. 24

    Bilan, S., Zotti, L. A. & Cuevas, J. C. Theoretical study of the charge transport through C60-based single-molecule junctions. Phys. Rev. B 85, 205403 (2012).

    Article  Google Scholar 

  25. 25

    Géranton, G., Seiler, C., Bagrets, A., Venkataraman, L. & Evers, F. Transport properties of individual C60-molecules. J. Chem. Phys. 139, 234701 (2013).

    Article  Google Scholar 

  26. 26

    Ulstrup, S., Frederiksen, T. & Brandbyge, M. Nonequilibrium electron-vibration coupling and conductance fluctuations in a C60 junction. Phys. Rev. B 86, 245417 (2012).

    Article  Google Scholar 

  27. 27

    Xiang, D. et al. Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett. 13, 2809–2813 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Kim, Y., Pietsch, T., Erbe, A., Belzig, W. & Scheer, E. Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 11, 3734–3738 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Kim, Y. et al. Charge transport in azobenzene-based single-molecule junctions. Phys. Rev. Lett. 109, 226801 (2012).

    Article  Google Scholar 

  30. 30

    Baheti, K. et al. Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715–719 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Tan, A. et al. Length dependence of frontier orbital alignment in aromatic molecular junctions. Appl. Phys. Lett. 101, 243107 (2012).

    Article  Google Scholar 

  32. 32

    Yee, S. K., Malen, J. A., Majumdar, A. & Segalman, R. A. Thermoelectricity in fullerene–metal heterojunctions. Nano Lett. 11, 4089–4094 (2011).

    CAS  Article  Google Scholar 

Download references


P.R. acknowledges support from the Office of Naval Research (award no. N00014-13-1-0320; nanofabrication of devices), the Department of Energy–Basic Energy Sciences (a grant from the Scanning Probe Microscopy Division, award no. DE-SC0004871; scanning thermal microscopy), the Air Force Office of Scientific Research (award no. FA9550-12-1-0058; instrumentation) and the University of Michigan–Ben Gurion University of the Negev Joint Research Collaboration (device modelling). All authors acknowledge the Lurie Nanofabrication Facility (LNF) for facilitating the nanofabrication of devices.

Author information




The project was conceived by P.R. Thermopower gating and other electrical measurements were performed by Y.K. and W.J. Nanoscale thermal imaging was performed by K.K. and W.L. Finite-element thermal modelling was performed by W.J. EBJIHs were designed and nanofabricated by W.J., Y.K. and K.K. The manuscript was written by P.R., Y.K. and W.J., with comments and input from all authors.

Corresponding author

Correspondence to Pramod Reddy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2756 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Jeong, W., Kim, K. et al. Electrostatic control of thermoelectricity in molecular junctions. Nature Nanotech 9, 881–885 (2014). https://doi.org/10.1038/nnano.2014.209

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research