Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy



When designing drug carriers, the drug-to-carrier ratio is an important consideration, because the use of high quantities of carriers can result in toxicity as a consequence of poor metabolism and elimination of the carriers1. However, these issues would be of less concern if both the drug and carrier had therapeutic effects. (−)-Epigallocatechin-3-O-gallate (EGCG), a major ingredient of green tea, has been shown, for example, to possess anticancer effects2,3,4,5,6,7, anti-HIV effects8, neuroprotective effects9 and DNA-protective effects10. Here, we show that sequential self-assembly of the EGCG derivative with anticancer proteins leads to the formation of stable micellar nanocomplexes, which have greater anticancer effects in vitro and in vivo than the free protein. The micellar nanocomplex is obtained by complexation of oligomerized EGCG with the anticancer protein Herceptin to form the core, followed by complexation of poly(ethylene glycol)–EGCG to form the shell. When injected into mice, the Herceptin-loaded micellar nanocomplex demonstrates better tumour selectivity and growth reduction, as well as longer blood half-life, than free Herceptin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic diagram and morphology of self-assembled MNCs loaded with proteins.
Figure 2: Formation and dissociation of protein/OEGCG complexes.
Figure 3: Core–shell MNC formation.
Figure 4: Anticancer effect and biodistribution of the MNCs.


  1. 1

    Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Cao, Y. & Cao, R. Angiogenesis inhibited by drinking tea. Nature 398, 381 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Jankun, J., Selman, S. H., Swiercz, R. & Skrzypczak-Jankun, E. Why drinking green tea could prevent cancer. Nature 387, 561 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Tachibana, H., Koga, K., Fujimura, Y. & Yamada, K. A receptor for green tea polyphenol EGCG. Nature Struct. Mol. Biol. 11, 380–381 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Liang, G. et al. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int. J. Oncol. 37, 111–123 (2010).

    CAS  Google Scholar 

  6. 6

    Garbisa, S. et al. Tumor invasion: molecular shears blunted by green tea. Nature Med. 5, 1216 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Du, G. J. et al. Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4, 1679–1691 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Li, S., Hattori, T. & Kodama, E. N. Epigallocatechin gallate inhibits the HIV reverse transcription step. Antivir. Chem. Chemother. 21, 239–243 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Yu, J. et al. Epigallocatechin-3-gallate protects motor neurons and regulates glutamate level. FEBS Lett. 584, 2921–2925 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Morley, N. et al. The green tea polyphenol (–)-epigallocatechin gallate and green tea can protect human cellular DNA from ultraviolet and visible radiation-induced damage. Photodermatol. Photoimmunol. Photomed. 21, 15–22 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Miyata, K., Christie, R. J. & Kataoka, K. Polymeric micelles for nano-scale drug delivery. React. Funct. Polym. 71, 227–234 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Musacchio, T. & Torchilin, V. P. Recent developments in lipid-based pharmaceutical nanocarriers. Front. Biosci. 16, 1388–1412 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2, 347–360 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Hubbell, J. A. Materials science. Enhancing drug function. Science 300, 595–596 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Kopecek, J. & Kopeckova, P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev. 62, 122–149 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Duncan, R. Polymer conjugates as anticancer nanomedicines. Nature Rev. Cancer 6, 688–701 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Farokhzad, O. C. et al. Nanoparticle–aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Miura, Y. et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano 7, 8583–8592 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Cabral, H. et al. Targeted therapy of spontaneous murine pancreatic tumors by polymeric micelles prolongs survival and prevents peritoneal metastasis. Proc. Natl Acad. Sci. USA 110, 11397–11402 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Wang, F. et al. Selective tissue distribution and long circulation endowed by paclitaxel loaded PEGylated poly(epsilon-caprolactone-co-L-lactide) micelles leading to improved anti-tumor effects and low systematic toxicity. Int. J. Pharm. 456, 101–112 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nature Rev. Drug Discov. 2, 214–221 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Kim, D., Gao, Z. G., Lee, E. S. & Bae, Y. H. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol. Pharmacol. 6, 1353–1362 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Ishii, T. et al. Treatment of cerebral ischemia-reperfusion injury with PEGylated liposomes encapsulating FK506. FASEB J. 27, 1362–1370 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Yang, C. S. & Wang, Z. Y. Tea and cancer. J. Natl Cancer Inst. 85, 1038–1049 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Kuzuhara, T., Sei, Y., Yamaguchi, K., Suganuma, M. & Fujiki, H. DNA and RNA as new binding targets of green tea catechins. J. Biol. Chem. 281, 17446–17456 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Chung, J. E., Kurisawa, M., Kim, Y. J., Uyama, H. & Kobayashi, S. Amplification of antioxidant activity of catechin by polycondensation with acetaldehyde. Biomacromolecules 5, 113–118 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Saucier, C., Guerra, C., Pianet, I., Laguerre, M. & Glories, Y. (+)-Catechin-acetaldehyde condensation products in relation to wine-ageing. Phytochemistry 46, 229–234 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Jobstl, E., O'Connell, J., Fairclough, J. P. & Williamson, M. P. Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules 5, 942–949 (2004).

    Article  Google Scholar 

  29. 29

    Villalba, J. J. & Provenza, F. D. Preference for polyethylene glycol by sheep fed a quebracho tannin diet. J. Anim. Sci. 79, 2066–2074 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Hisaka, T. et al. Interferon-αCon1 suppresses proliferation of liver cancer cell lines in vitro and in vivo. J. Hepatol. 41, 782–789 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Choi, H. S. et al. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew. Chem. Int. Ed. 50, 6258–6263 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Chou, T. C., Motzer, R. J., Tong, Y. & Bosl, G. J. Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J. Natl Cancer Inst. 86, 1517–1524 (1994).

    CAS  Article  Google Scholar 

  33. 33

    Sun, J. et al. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, taxol, and gemcitabine. Cancer Res. 59, 4919–4926 (1999).

    CAS  Google Scholar 

Download references


This research was funded by the Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore) and the National Institutes of Health (NIBIB grant no. R01-EB-011523, to H.S.C.). The authors thank A. Yamashita and J.P.K. Tan for their assistance with cell culture and TEM experiments, respectively.

Author information




J.E.C. and M.K. conceived and designed the experiments. J.E.C., S.T., N.Y. and S.J.G. performed the experiments. S.H.K., J.H.L. and H.S.C. performed experiments and analysed data regarding biodistribution and pharmacokinetics. H.Y. provided HAK-1B cells. J.E.C. and M.K. reviewed, analysed and interpreted the data. J.E.C., S.T., H.S.C., M.K and J.Y.Y wrote the paper. All authors discussed the results. J.E.C. and M.K. supervised the project.

Corresponding authors

Correspondence to Joo Eun Chung or Motoichi Kurisawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 5278 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chung, J., Tan, S., Gao, S. et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nature Nanotech 9, 907–912 (2014).

Download citation

Further reading