Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optomechanical photon shuttling between photonic cavities

Abstract

Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave mixing between photons and phonons, and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong non-local effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a multicavity optomechanical device in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of this ‘photon see-saw’, are modulated antisymmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation, which strongly modulates the inter-cavity coupling and shuttles photons to the other empty cavity during every oscillation cycle in a well-regulated fashion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photon see-saw oscillator.
Figure 2: Impulse response and photon see-saw effect.
Figure 3: Optomechanical self-oscillation and dynamics of the cavity resonances.
Figure 4: Optomechanical photon shuttling between two cavities.

Similar content being viewed by others

References

  1. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  CAS  Google Scholar 

  2. Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

    Article  CAS  Google Scholar 

  3. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  CAS  Google Scholar 

  4. Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photon. 4, 477–483 (2010).

    Article  CAS  Google Scholar 

  5. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    Article  CAS  Google Scholar 

  6. Vlasov, Y., Green, W. M. J. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nature Photon. 2, 242–246 (2008).

    Article  CAS  Google Scholar 

  7. Yang, X., Yu, M., Kwong, D-L. & Wong, C. W. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett. 102, 173902 (2009).

    Article  Google Scholar 

  8. Deotare, P. B., McCutcheon, M. W., Frank, I. W., Khan, M. & Lončar, M. Coupled photonic crystal nanobeam cavities. Appl. Phys. Lett. 95, 031102 (2009).

    Article  Google Scholar 

  9. Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photon. 6, 56–61 (2012).

    Article  CAS  Google Scholar 

  10. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  CAS  Google Scholar 

  11. Povinelli, M. L. et al. Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005).

    Article  Google Scholar 

  12. Masaya, N., Hideaki, T., Satoshi, M. & Eiichi, K. Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs. Phys. Rev. Lett. 97, 023903 (2006).

    Article  Google Scholar 

  13. Rakich, P. T., Popovic, M. A., Soljacic, M. & Ippen, E. P. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials. Nature Photon. 1, 658–665 (2007).

    Article  CAS  Google Scholar 

  14. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008).

    Article  CAS  Google Scholar 

  15. Li, M., Pernice, W. H. P. & Tang, H. X. Tunable bipolar optical interactions between guided lightwaves. Nature Photon. 3, 464–468 (2009).

    Article  CAS  Google Scholar 

  16. Marquardt, F. & Girvin, S. Optomechanics. Physics 2, 40 (2009).

    Article  Google Scholar 

  17. Wiederhecker, G. S., Chen, L., Gondarenko, A. & Lipson, M. Controlling photonic structures using optical forces. Nature 462, 633–636 (2009).

    Article  CAS  Google Scholar 

  18. Fong, K. Y., Pernice, W. H. P., Li, M. & Tang, H. X. Tunable optical coupler controlled by optical gradient forces. Opt. Express 19, 15098–15108 (2011).

    Article  CAS  Google Scholar 

  19. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Preprint at http://arXiv.org/pdf/1303.0733 (2013).

  20. Arcizet, O., Cohadon, P. F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  CAS  Google Scholar 

  21. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    Article  CAS  Google Scholar 

  22. Kleckner, D. & Bouwmeester, D. Sub-Kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  CAS  Google Scholar 

  23. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  CAS  Google Scholar 

  24. Wilson, D. J., Regal, C. A., Papp, S. B. & Kimble, H. J. Cavity optomechanics with stoichiometric SiN films. Phys. Rev. Lett. 103, 207204 (2009).

    Article  CAS  Google Scholar 

  25. Groblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009).

    Article  Google Scholar 

  26. Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  CAS  Google Scholar 

  27. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article  CAS  Google Scholar 

  28. Park, Y. S. & Wang, H. L. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Phys. 5, 489–493 (2009).

    Article  CAS  Google Scholar 

  29. Ding, L. et al. High frequency GaAs nano-optomechanical disk resonator. Phys. Rev. Lett. 105, 263903 (2010).

    Article  Google Scholar 

  30. Zhang, M. et al. Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109, 233906 (2012).

    Article  Google Scholar 

  31. Bagheri, M., Poot, M., Fan, L., Marquardt, F. & Tang, H. X. Photonic cavity synchronization of nanomechanical oscillators. Phys. Rev. Lett. 111, 213902 (2013).

    Article  Google Scholar 

  32. Heinrich, G., Harris, J. G. E. & Marquardt, F. Photon shuttle: Landau–Zener–Stückelberg dynamics in an optomechanical system. Phys. Rev. A 81, 01180(R) (2010).

    Article  Google Scholar 

  33. Quan, Q., Deotare, P. B. & Loncar, M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl. Phys. Lett. 96, 203102 (2010).

    Article  Google Scholar 

  34. Quan, Q. M. & Loncar, M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt. Express 19, 18529–18542 (2011).

    Article  CAS  Google Scholar 

  35. Bagheri, M., Poot, M., Li, M., Pernice, W. P. H. & Tang, H. X. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nature Nanotech. 6, 726–732 (2011).

    Article  CAS  Google Scholar 

  36. Fuhrmann, D. A. et al. Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nature Photon. 5, 605–609 (2011).

    Article  CAS  Google Scholar 

  37. Bouwmeester, D. et al. Observation of Landau–Zener dynamics in classical optical systems. Phys. Rev. A 51, 646–654 (1995).

    Article  CAS  Google Scholar 

  38. Burgess, J. A. et al. Quantitative magneto–mechanical detection and control of the Barkhausen effect. Science 339, 1051–1054 (2013).

    Article  CAS  Google Scholar 

  39. Kim, P. H. et al. Nanoscale torsional optomechanics. Appl. Phys. Lett. 102, 053102 (2013).

    Article  Google Scholar 

  40. Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nature Photon. 6, 768–772 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support provided by the Young Investigator Program of the Air Force Office of Scientific Research (Award No. FA9550-12-1-0338). Parts of this work were carried out in the University of Minnesota Nanofabrication Center, which receives partial support from National Science Foundation (NSF) through the National Nanotechnology Infrastructure Network program, and the Characterization Facility, which is a member of the NSF-funded Materials Research Facilities Network via the Materials Research Science and Engineering Centers program. H.L. acknowledges the support of a Doctoral Dissertation Fellowship provided by the Graduate School of the University of Minnesota.

Author information

Authors and Affiliations

Authors

Contributions

M.L. conceived and supervised the research; H.L. and M.L. designed the experiments; H.L. performed the fabrication and measurement and analysed the data; M.L. and H.L. co-wrote the paper.

Corresponding author

Correspondence to Mo Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, M. Optomechanical photon shuttling between photonic cavities. Nature Nanotech 9, 913–919 (2014). https://doi.org/10.1038/nnano.2014.200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing