Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lasing action in strongly coupled plasmonic nanocavity arrays

Abstract

Periodic dielectric structures are typically integrated with a planar waveguide to create photonic band-edge modes for feedback in one-dimensional distributed feedback lasers and two-dimensional photonic-crystal lasers1,2,3,4. Although photonic band-edge lasers are widely used in optics and biological applications, drawbacks include low modulation speeds and diffraction-limited mode confinement5,6. In contrast, plasmonic nanolasers can support ultrafast dynamics and ultrasmall mode volumes7,8,9. However, because of the large momentum mismatch between their nanolocalized lasing fields and free-space light, they suffer from large radiative losses and lack beam directionality. Here, we report lasing action from band-edge lattice plasmons in arrays of plasmonic nanocavities in a homogeneous dielectric environment. We find that optically pumped, two-dimensional arrays of plasmonic Au or Ag nanoparticles surrounded by an organic gain medium show directional beam emission (divergence angle <1.5° and linewidth <1.3 nm) characteristic of lasing action in the far-field, and behave as arrays of nanoscale light sources in the near-field. Using a semi-quantum electromagnetic approach to simulate the active optical responses, we show that lasing is achieved through stimulated energy transfer from the gain to the band-edge lattice plasmons in the deep subwavelength vicinity of the individual nanoparticles. Using femtosecond-transient absorption spectroscopy, we verified that lattice plasmons in plasmonic nanoparticle arrays could reach a 200-fold enhancement of the spontaneous emission rate of the dye because of their large local density of optical states.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Plasmonic nanocavity array laser.
Figure 2: Coherent lasing action in strongly coupled plasmonic nanoparticle arrays.
Figure 3: Nanoscale energy transfer responsible for lasing action.
Figure 4: Optical response of nanoparticle arrays surrounded by gain depends strongly on the materials of nanoparticles.
Figure 5: Ultrafast decay rates of excited-state molecules indicate enhanced spontaneous emission rates by the Purcell effect.

References

  1. Kogelnik, H. & Shank, C. V. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972).

    Article  Google Scholar 

  2. Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7–9 (1999).

    Article  CAS  Google Scholar 

  3. Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    Article  CAS  Google Scholar 

  4. Matsubara, H. et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths. Science 319, 445–447 (2008).

    Article  CAS  Google Scholar 

  5. Altug, H., Englund, D. & Vuckovic, J. Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484–488 (2006).

    Article  CAS  Google Scholar 

  6. Englund, D., Atlug, H., Ellis, B. & Vuckovic, J. Ultrafast photonic crystal lasers. Laser Photon. Rev. 2, 264–274 (2008).

    Article  CAS  Google Scholar 

  7. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1168 (2009).

    Article  CAS  Google Scholar 

  8. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  9. Stockman, M. I. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010).

    Article  Google Scholar 

  10. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  11. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  12. Ma, R-M., Oulton, R. F., Sorger, V. J. & Zhang, X. Plasmon lasers: coherent light source at molecular scales. Laser Photon. Rev. 7, 1–21 (2012).

    Article  Google Scholar 

  13. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  14. Zou, S. L., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).

    Article  CAS  Google Scholar 

  15. Auguie, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Article  Google Scholar 

  16. Chu, Y. Z., Schonbrun, E., Yang, T. & Crozier, K. B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93, 181108 (2008).

    Article  Google Scholar 

  17. Kravets, V. G., Schedin, F. & Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101, 087403 (2008).

    Article  CAS  Google Scholar 

  18. Vecchi, G., Giannini, V. & Rivas, J. G. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys. Rev. B 80, 201401 (2009).

    Article  Google Scholar 

  19. Zhou, W. & Odom, T. W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nature Nanotech. 6, 423–427 (2011).

    Article  CAS  Google Scholar 

  20. Zhou, W., Hua, Y., Huntington, M. D. & Odom, T. W. Delocalized lattice plasmon resonances show dispersive quality factors. J. Phys. Chem. Lett. 3, 1381–1385 (2012).

    Article  CAS  Google Scholar 

  21. Loncar, M. et al. Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides. Appl. Phys. Lett. 80, 1689–1691 (2002).

    Article  CAS  Google Scholar 

  22. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  CAS  Google Scholar 

  23. Vecchi, G., Giannini, V. & Rivas, J. G. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009).

    Article  CAS  Google Scholar 

  24. Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nature Photon. 3, 546–549 (2009).

    Article  CAS  Google Scholar 

  25. Siegman, A. E. Lasers (University Science Books, 1986).

    Google Scholar 

  26. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article  CAS  Google Scholar 

  27. Wang, D. L. et al. Investigation on photoexcited dynamics of IR-140 dye in ethanol by femtosecond supercontinuum-probing technique. J. Opt. A 4, 155–159 (2002).

    Article  Google Scholar 

  28. Rurack, K. & Spieles, M. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600–1000 nm. Anal. Chem. 83, 1232–1242 (2011).

    Article  CAS  Google Scholar 

  29. Henzie, J., Lee, M. H. & Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nature Nanotech. 2, 549–554 (2007).

    Article  CAS  Google Scholar 

  30. Nagra, A. S. & York, R. A. FDTD analysis of wave propagation in nonlinear absorbing and gain media. IEEE Trans Antennas Propag. 46, 334–340 (1998).

    Article  Google Scholar 

  31. Van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF-MRSEC program at the Materials Research Science and Engineering Center at Northwestern University (DMR-1121262; W.Z., J.Y.S., M.D., G.C.S., T.W.O.), the Initiative for Sustainability and Energy at Northwestern (ISEN) Faculty Booster Award (J.Y.S., C.H.K., D.T.C.) and the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (DE-SC0004752; M.D., G.C.S.). Transient absorption measurement and data analysis were supported as part of the ANSER Center, an Energy Frontier Research Center funded by the DOE (DE-SC0001059; D.T.C., M.R.W.).

Author information

Authors and Affiliations

Authors

Contributions

W.Z. and T.W.O. conceived the idea of a new surface-emitting laser based on strongly coupled plasmonic nanocavity arrays. W.Z. fabricated the devices, carried out the angle-resolved optical measurement, and performed FDTD numerical simulations of the passive optical responses of the devices. M.D. developed the numerical methods to simulate the active optical responses of the device. J.Y.S., C.H.K. and W.Z. carried out lasing and transient absorption measurements, and C.H.K. and D.T.C. set up the transient absorption measurements. T.W.O., G.C.S., D.T.C. and M.R.W. guided the experimental and theoretical investigations. W.Z. and T.W.O. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Teri W. Odom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2684 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, W., Dridi, M., Suh, J. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotech 8, 506–511 (2013). https://doi.org/10.1038/nnano.2013.99

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.99

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research