Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria

Abstract

So far, although various diagnostic approaches for pathogen detection have been proposed, most are too expensive, lengthy or limited in specificity for clinical use. Nanoparticle systems with unique material properties, however, circumvent these problems and offer improved accuracy over current methods. Here, we present novel magneto-DNA probes capable of rapid and specific profiling of pathogens directly in clinical samples. A nanoparticle hybridization assay, involving ubiquitous and specific probes that target bacterial 16S rRNAs, was designed to detect amplified target DNAs using a miniaturized NMR device. Ultimately, the magneto-DNA platform will allow both universal and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. Furthermore, the assay is robust and rapid, simultaneously diagnosing a panel of 13 bacterial species in clinical specimens within 2 h. The generic platform described could be used to rapidly identify and phenotype pathogens for a variety of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magneto-DNA assay for the detection of bacterial 16S rRNA.
Figure 2: Detection sensitivity of the magneto-DNA system.
Figure 3: Universal detection of bacteria using the magneto-DNA system.
Figure 4: Differential detection using the magneto-DNA system.
Figure 5: Diagnosis of clinical samples.

Similar content being viewed by others

References

  1. Allegranzi, B. et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet 377, 228–241 (2011).

    Article  Google Scholar 

  2. Polin, R. A. et al. Epidemiology and diagnosis of health care-associated infections in the NICU. Pediatrics 129, e1104–e1109 (2012).

    Article  Google Scholar 

  3. Klompas, M., Yokoe, D. S. & Weinstein, R. A. Automated surveillance of health care-associated infections. Clin. Infect. Dis. 48, 1268–1275 (2009).

    Article  Google Scholar 

  4. Giljohann, D. A. & Mirkin, C. A. Drivers of biodiagnostic development. Nature 462, 461–464 (2009).

    Article  CAS  Google Scholar 

  5. Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnol. 30, 434–439 (2012).

    Article  CAS  Google Scholar 

  6. Sauer, S. & Kliem, M. Mass spectrometry tools for the classification and identification of bacteria. Nature Rev. Microbiol. 8, 74–82 (2010).

    Article  CAS  Google Scholar 

  7. Li, Y., Cu, Y. T. & Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nature Biotechnol. 23, 885–889 (2005).

    Article  CAS  Google Scholar 

  8. Dark, P. M., Dean, P. & Warhurst, G. Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection. Crit. Care 13, 217 (2009).

    Article  Google Scholar 

  9. Pechorsky, A., Nitzan, Y. & Lazarovitch, T. Identification of pathogenic bacteria in blood cultures: comparison between conventional and PCR methods. J. Microbiol. Methods 78, 325–330 (2009).

    Article  CAS  Google Scholar 

  10. Ottesen, E. A., Hong, J. W., Quake, S. R. & Leadbetter, J. R. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314, 1464–1467 (2006).

    Article  CAS  Google Scholar 

  11. Loman, N. J. et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nature Rev. Microbiol. 10, 599–606 (2012).

    Article  CAS  Google Scholar 

  12. Niemz, A., Ferguson, T. M. & Boyle, D. S. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29, 240–250 (2011).

    Article  CAS  Google Scholar 

  13. Ward, D. M., Weller, R. & Bateson, M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63–65 (1990).

    Article  CAS  Google Scholar 

  14. Yang, S. et al. Quantitative multiprobe PCR assay for simultaneous detection and identification to species level of bacterial pathogens. J. Clin. Microbiol. 40, 3449–3454 (2002).

    Article  CAS  Google Scholar 

  15. Rajendhran, J. & Gunasekaran, P. Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol. Res. 166, 99–110 (2011).

    Article  CAS  Google Scholar 

  16. Woo, P. C., Lau, S. K., Teng, J. L., Tse, H. & Yuen, K. Y. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 14, 908–934 (2008).

    Article  CAS  Google Scholar 

  17. Lee, H., Sun, E., Ham, D. & Weissleder, R. Chip-NMR biosensor for detection and molecular analysis of cells. Nature Med. 14, 869–874 (2008).

    Article  Google Scholar 

  18. Haun, J. B., Devaraj, N. K., Hilderbrand, S. A., Lee, H. & Weissleder, R. Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nature Nanotech. 5, 660–665 (2010).

    Article  CAS  Google Scholar 

  19. Lee, H., Yoon, T. J., Figueiredo, J. L., Swirski, F. K. & Weissleder, R. Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl Acad. Sci. USA 106, 12459–12464 (2009).

    Article  CAS  Google Scholar 

  20. Wada, M. et al. Quantitative reverse transcription-PCR assay for the rapid detection of methicillin-resistant Staphylococcus aureus. J. Appl. Microbiol. 108, 779–788 (2010).

    Article  CAS  Google Scholar 

  21. Tristan, A. et al. Global distribution of Panton–Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus, 2006. Emerg. Infect. Dis. 13, 594–600 (2007).

    Article  Google Scholar 

  22. Perez, J. M., Josephson, L., O'Loughlin, T., Hogemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nature Biotechnol. 20, 816–820 (2002).

    Article  CAS  Google Scholar 

  23. Chung, H. J. et al. Ubiquitous detection of Gram-positive bacteria with bioorthogonal magnetofluorescent nanoparticles. ACS Nano 5, 8834–8841 (2011).

    Article  CAS  Google Scholar 

  24. Budin, G., Chung, H. J., Lee, H. & Weissleder, R. A magnetic Gram stain for bacterial detection. Angew. Chem. Int. Ed. 51, 7752–7755 (2012).

    Article  CAS  Google Scholar 

  25. Fraser, C. M., Eisen, J. A. & Salzberg, S. L. Microbial genome sequencing. Nature 406, 799–803 (2000).

    Article  CAS  Google Scholar 

  26. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  CAS  Google Scholar 

  27. Petrosino, J. F., Highlander, S., Luna, R. A., Gibbs, R. A. & Versalovic, J. Metagenomic pyrosequencing and microbial identification. Clin. Chem. 55, 856–866 (2009).

    Article  CAS  Google Scholar 

  28. Ince, J. & McNally, A. Development of rapid, automated diagnostics for infectious disease: advances and challenges. Exp. Rev. Med. Dev. 6, 641–651 (2009).

    Article  CAS  Google Scholar 

  29. Maurer, J. J. Rapid detection and limitations of molecular techniques. Annu. Rev. Food. Sci. Technol. 2, 259–279 (2011).

    Article  CAS  Google Scholar 

  30. Issadore, D. et al. Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-Hall detector. Sci. Transl. Med. 4, 141ra92 (2012).

    Article  Google Scholar 

  31. Josephson, L., Tung, C. H., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconj. Chem. 10, 186–191 (1999).

    Article  CAS  Google Scholar 

  32. Issadore, D. et al. Miniature magnetic resonance system for point-of-care diagnostics. Lab Chip 11, 2282–2287 (2011).

    Article  CAS  Google Scholar 

  33. MacDougall, D. & Crummett, W. B. Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal. Chem. 52, 2242–2249 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Fisher-Jeffes for reviewing the manuscript, N. Sergeyev for synthesis of MNPs, S. Chen and M. Mckee for help with electron microscopy, C. Min for help with the µNMR device, and J. Chung, K.S. Yang, J. Carlson, H. Shao and A.V. Ullal for assistance and many helpful discussions. The work was funded in part by National Institute of Health (grants R01EB004626, R01EB010011, HHSN268201000044C and R01HL113156).

Author information

Authors and Affiliations

Authors

Contributions

H.J.C. designed and performed the research, and co-wrote the manuscript. R.W. and H.L. designed the research and wrote the manuscript. R.W. provided overall guidance. H.L. reviewed the magnetic resonance measurement data. C.M.C. provided guidance and assistance regarding the clinical studies. H.I. performed scanning electron microscopy and atomic force microscopy. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Hakho Lee or Ralph Weissleder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, H., Castro, C., Im, H. et al. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nature Nanotech 8, 369–375 (2013). https://doi.org/10.1038/nnano.2013.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing