Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A general method for transferring graphene onto soft surfaces

Abstract

Recent advances in chemical vapour deposition have led to the fabrication of large graphene sheets on metal foils for use in research and development. However, further breakthroughs are required in the way these graphenes are transferred from their growth substrates onto the final substrate. Although various methods have been developed, as yet there is no general way to reliably transfer graphene onto arbitrary surfaces, such as ‘soft’ ones. Here, we report a method that allows the graphene to be transferred with high fidelity at the desired location on almost all surfaces, including fragile polymer thin films and hydrophobic surfaces. The method relies on a sacrificial ‘self-releasing’ polymer layer placed between a conventional polydimethylsiloxane elastomer stamp and the graphene that is to be transferred. This self-releasing layer provides a low work of adhesion on the stamp, which facilitates delamination of the graphene and its placement on the new substrate. To demonstrate the generality and reliability of our method, we fabricate high field-strength polymer capacitors using graphene as the top contact over a polymer dielectric thin film. These capacitors show superior dielectric breakdown characteristics compared with those made with evaporated metal top contacts. Furthermore, we fabricate low-operation-voltage organic field-effect transistors using graphene as the gate electrode placed over a thin polymer gate dielectric layer. We finally demonstrate an artificial graphite intercalation compound by stacking alternate monolayers of graphene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). This compound, which comprises graphene sheets p-doped by partial hole transfer from the F4TCNQ, shows a high and remarkably stable hole conductivity, even when heated in the presence of moisture.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the self-release layer (SRL) methodology in combination with a pick-and-place elastomer stamp.
Figure 2: High-fidelity graphene transfer enabled by the SRL/pick-and-place methodology.
Figure 3: Field-dependent dielectric breakdown characteristics of 45-nm-thick Teflon AF2400 ultrathin-film capacitors (with an area of 0.22 mm2), with transferred graphene or various evaporated metals as top electrodes.
Figure 4: Low-voltage organic FETs with sub-100-nm-thick polymer top dielectric gated by graphene.
Figure 5: Artificial F4TCNQ graphite intercalation compound.

References

  1. 1

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Chae, S. J. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv. Mater. 21, 2328–2333 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Mattevi, C., Kim, H. & Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Rasool, H. I. et al. Continuity of graphene on polycrystalline copper. Nano Lett. 11, 251–256 (2010).

    Article  Google Scholar 

  7. 7

    Grantab, R., Shenoy, V. B. & Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946–948 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Wofford, J. M., Nie, S., McCarty, K. F., Bartelt, N. C. & Dubon, O. D. Graphene islands on Cu foils: the interplay between shape, orientation, and defects. Nano Lett. 10, 4890–4896 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Kim, K. S., Lee, Z., Regan, W., Kisielowski, C., Crommie, M. F. & Zettl, A. Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142–2146 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Suk, J. W. et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Song, L., Ci, L., Gao, W. & Ajayan, P. M. Transfer printing of graphene using gold film. ACS Nano 3, 1353–1356 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Caldwell, J. D. et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 4, 1108–1114 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Kang, S. J. et al. Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance OFETs. Adv. Mater. 23, 3531–3535 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Li, X. et al. Synthesis, characterization, and properties of large-area graphene films. ECS Trans. 19, 41–52 (2009).

    Article  Google Scholar 

  18. 18

    Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Glasmäster, K., Gold, J., Andersson, A. S., Sutherland, D. S. & Kasemo, B. Silicone transfer during microcontact printing. Langmuir 19, 5475–5483 (2003).

    Article  Google Scholar 

  20. 20

    Blake, P., Hill, E. W., Castro Neto, A. H., Novoselov, K. S. & Jiang, D. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  21. 21

    Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V. & Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Pirkle, A. et al. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2 . Appl. Phys. Lett. 99, 122108 (2011).

    Article  Google Scholar 

  23. 23

    McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Mater. 5, 328–333 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Zhao, L. H. et al. Role of borderline solvents to induce pronounced extended-chain lamellar order in pi-stackable polymers. Macromolecules 44, 9692–9702 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Tripathi, A. K., Smits, E. C. P., Loth, M., Anthony, J. E. & Gelinck, G. H. Charge transport in solution processable polycrystalline dual-gate organic field effect transistors. Appl. Phys. Lett. 98, 202106 (2011).

    Article  Google Scholar 

  26. 26

    Ieda, M. Carrier injection, space charge and electrical breakdown in insulating polymers. IEEE Trans. Electr. Insul. EI-22, 261–267 (1987).

    CAS  Article  Google Scholar 

  27. 27

    Chen, Q., Chu, B., Zhou, X. & Zhang, Q. M. Effect of metal–polymer interface on the breakdown electric field of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Appl. Phys. Lett. 91, 062907 (2007).

    Article  Google Scholar 

  28. 28

    Wolters, D. R. & van der Schoot, J. J. Dielectric breakdown in MOS devices: Part II: Conditions for intrinsic breakdown. Philips J. Res. 40, 137–163 (1985).

    CAS  Google Scholar 

  29. 29

    Wolters, D. R. & van der Schoot, J. J. Dielectric-breakdown in MOS devices: Part I: Defect-related and intrinsic breakdown. Philips J. Res. 40, 115–136 (1985).

    CAS  Google Scholar 

  30. 30

    Zhou, M. et al. Effective work functions for the evaporated metal/organic semiconductor contacts from in-situ diode flatband potential measurements. Appl. Phys. Lett. 101, 013501 (2012).

    Article  Google Scholar 

  31. 31

    Chua, L. L., Ho, P. K. H., Sirringhaus, H. & Friend, R. H. High stability ultrathin spin-on benzocyclobutene gate dielectric for polymer field-effect transistors. Appl. Phys. Lett. 84, 3400–3402 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Dresselhaus, G. & Dresselhaus, M. S. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Lim, G. K. et al. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature Photon. 5, 554–560 (2011).

    CAS  Article  Google Scholar 

  34. 34

    Chen, W., Chen, S., Qi, D. C., Gao, X. Y. & Wee, A. T. S. Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 129, 10418–10422 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Coletti, C. et al. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 81, 235401 (2010).

    Article  Google Scholar 

  36. 36

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Pietronero, L., Strässler, S., Zeller, H. R. & Rice, M. J. Electrical conductivity of a graphite layer. Phys. Rev. B 22, 904–910 (1980).

    CAS  Article  Google Scholar 

  38. 38

    Khrapach, I. et al. Novel highly conductive and transparent graphene-based conductors. Adv. Mater. 24, 2844–2849 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Günes, F. et al. Layer-by-layer doping of few-layer graphene film. ACS Nano 4, 4595–4600 (2010).

    Article  Google Scholar 

  41. 41

    Wang, Y., Tong, S. F., Xu, X. F., Özyilmaz, B. & Loh, K. P. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv. Mater. 23, 1514–1518 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

F.Y.K. acknowledges DSO National Laboratories for a PhD scholarship. This work was supported by the Ministry of Education (grant R-143-000-524-112) and DSO National Laboratories (grant R-143-000-465-592). The authors thank K. P. Loh and Y. Wang for providing the first CVD graphene samples in a preliminary phase of this project.

Author information

Affiliations

Authors

Contributions

J.S. and F.Y.K. performed the experiments and analysed the data. P.K.H.H. analysed the data. L.L.C. conceived and designed the experiments, and analysed the data. J.S., F.Y.K., P.K.H.H. and L.L.C. co-wrote the paper. R.Q.P., W.L.S. and J.M.Z. contributed to methodology development. G.K.L. contributed materials insights. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Lay-Lay Chua.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1053 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, J., Kam, FY., Png, RQ. et al. A general method for transferring graphene onto soft surfaces. Nature Nanotech 8, 356–362 (2013). https://doi.org/10.1038/nnano.2013.63

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research