Magnetic skyrmions are nanoscale spin configurations that hold promise as information carriers in ultradense memory and logic devices owing to the extremely low spin-polarized currents needed to move them.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Elongated skyrmion as spin torque nano-oscillator and magnonic waveguide
Communications Physics Open Access 01 December 2022
-
Chirality flips of skyrmion bubbles
Nature Communications Open Access 11 October 2022
-
Measuring the magnetic topological spin structure of light using an anapole probe
Light: Science & Applications Open Access 06 October 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Skyrme, T. H. R. Nucl. Phys. 31, 556–569 (1962).
Mühlbauer, S. et al. Science 323, 915–919 (2009).
Neubauer, A. et al. Phys. Rev. Lett. 102, 186602 (2009).
Pappas, C. et al. Phys. Rev. Lett. 102, 197202 (2009).
Parkin, S. S. P., Hayasi, M. & Thomas, L. Science 320, 197202 (2009).
Röβler, U. K., Bogdanov, A. N. & Pfleiderer, C. Nature 442, 797–801 (2006).
Dzyaloshinskii, I. E. J. Phys. Chem. Sol. 4, 241–255 (1958).
Moriya, T. Phys. Rev. 120, 91–98 (1960).
Crépieux, A. & Lacroix, C. J. Magn. Magn. Mater. 182, 341–349 (1998).
Fert, A. Mater. Sci. Forum 59–60, 439–480 (1990).
Fert, A. & Levy, P. M. Phys. Rev. Lett. 44, 1538–1541 (1980).
Heinze, S. et al. Nature Phys. 7, 713–718 (2011).
Yu, X. Z. et al. Nature 465, 901–904 (2010).
Münzer, W. et al. Phys. Rev. B 81, 041203(R) (2010).
Yu, X. Z. et al. Nature Mater. 10, 106–109 (2011).
Huang, S. X. & Chien, C. L. Phys. Rev. Lett. 108, 267201 (2012).
Seki, S. et al. Science 336, 198–201 (2012).
Raicevic, I. et al. Phys. Rev. Lett. 106, 227206 (2011).
Schulz, T. et al. Nature Phys. 8, 301–304 (2012).
Bauer, A. & Pfleiderer, C. Phys. Rev. B 85, 214418 (2012).
Ferriani, P. et al. Phys. Rev. Lett. 101, 027201 (2008).
Jonietz, F. et al. Science 330, 1648–1651 (2010).
Yu, X. Z. et al. Nature Commun. 3, 988 (2012).
Everschor, K. Current-Induced Dynamics of Chiral Magnetic Structures : Skyrmions, Emergent Electrodynamics and Spin-Transfer Torques. PhD thesis, University of Köln, Germany (2012).
Everschor, K. et al. Phys. Rev. B 86, 054432 (2012).
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Nature Commun. 4, 1463 (2013).
Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rössler, U. K. J. Phys. D 44, 392001 (2011).
Acknowledgements
We acknowledge the support of S. Rohart and A. Thiaville from LPS (Université Paris-Sud/CNRS), Orsay, France for the numerical calculations of Fig. 3, and K. Everschor who helped in the preparation of some of the figures.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information Movie S1
(GIF 1226 kb)
Supplementary Information Movie S2
(GIF 1461 kb)
Supplementary Information Movie S3
(GIF 1361 kb)
Rights and permissions
About this article
Cite this article
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotech 8, 152–156 (2013). https://doi.org/10.1038/nnano.2013.29
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2013.29
This article is cited by
-
Direct Visualisation of Skyrmion Lattice Defect Alignment at Grain Boundaries
Nanoscale Research Letters (2022)
-
Spin-orbit enabled all-electrical readout of chiral spin-textures
Nature Communications (2022)
-
Spanning Fermi arcs in a two-dimensional magnet
Nature Communications (2022)
-
Chirality flips of skyrmion bubbles
Nature Communications (2022)
-
Multifunctional two-dimensional van der Waals Janus magnet Cr-based dichalcogenide halides
npj Computational Materials (2022)