Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tunable infrared plasmonic devices using graphene/insulator stacks


The collective oscillation of carriers—the plasmon1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17—in graphene has many desirable properties, including tunability and low loss11,12,13,14,16,17. However, in single-layer graphene, the dependence on carrier concentration of both the plasmonic resonance frequency and magnitude is relatively weak16,17, limiting its applications in photonics. Here, we demonstrate transparent photonic devices based on graphene/insulator stacks, which are formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, then patterning them together into photonic-crystal-like structures18. We show experimentally that the plasmon in such stacks is unambiguously non-classical. Compared with doping in single-layer graphene, distributing carriers into multiple graphene layers effectively enhances the plasmonic resonance frequency and magnitude, which is different from the effect in a conventional semiconductor superlattice3,4 and is a direct consequence of the unique carrier density scaling law of the plasmonic resonance of Dirac fermions8,16. Using patterned graphene/insulator stacks, we demonstrate widely tunable far-infrared notch filters with 8.2 dB rejection ratios and terahertz linear polarizers with 9.5 dB extinction ratios. An unpatterned stack consisting of five graphene layers shields 97.5% of electromagnetic radiation at frequencies below 1.2 THz. This work could lead to the development of transparent mid- and far-infrared photonic devices such as detectors, modulators and three-dimensional metamaterial systems19,20.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of transparent graphene plasmonic devices.
Figure 2: Electromagnetic wave shielding using as-prepared transparent graphene/insulator stacks.
Figure 3: Plasmons in patterned graphene/insulator stacks at the strong coupling limit.
Figure 4: Transparent far-infrared filters and terahertz polarizers.


  1. Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

    Article  CAS  Google Scholar 

  2. Allen, S. J., Tsui, D. C. & Logan, R. A. Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38, 980–983 (1977).

    Article  CAS  Google Scholar 

  3. Das Sarma, S. & Quinn, J. J. Collective excitations in semiconductor super-lattices. Phys. Rev. B 25, 7603–7618 (1982).

    Article  CAS  Google Scholar 

  4. Olego, D., Pinczuk, A., Gossard, A. C. & Wiegmann, W. Plasma dispersion in a layered electron gas: a determination in GaAs–(AlGa) As heterostructures. Phys. Rev. B 25, 7867–7870 (1982).

    Article  CAS  Google Scholar 

  5. Leavitt, R. P. & Little, J. W. Absorption and emission of radiation by plasmons in two-dimensional electron-gas disks. Phys. Rev. B 34, 2450–2457 (1986).

    Article  CAS  Google Scholar 

  6. Allen, S. J., Stormer, H. L. & Hwang, J. C. M. Dimensional resonance of the two-dimensional electron gas in selectively doped GaAs/AlGaAs heterostructures. Phys. Rev. B 28, 4875–4877 (1983).

    Article  CAS  Google Scholar 

  7. Halas, N. J. et al. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    Article  CAS  Google Scholar 

  8. Hwang, E. H. & Das Sarma, S. Collective modes of the massless Dirac plasma. Phys. Rev. Lett. 102, 206412 (2009).

    Article  Google Scholar 

  9. Hwang, E. H. & Das Sarma, S. Plasmon modes of spatially separated double-layer graphene. Phys. Rev. B 80, 205405 (2009).

    Article  Google Scholar 

  10. Abedinpour, S. H. et al. Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets. Phys. Rev. B 84, 045429 (2011).

    Article  Google Scholar 

  11. Rana, F. Graphene terahertz plasmon oscillators. IEEE Trans. Nanotech. 7, 91–99 (2008).

    Article  Google Scholar 

  12. Koppens, F. H. L., Chang, D. E. & Javier Garcia de Abajo, F. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  CAS  Google Scholar 

  13. Thongrattanasiri, S., Koppens, F. H. L. & Garcia de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

    Article  Google Scholar 

  14. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  CAS  Google Scholar 

  15. Liu, Y., Willis, R. F., Emtsev, K. V. & Seyller, T. Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B 78, 035443 (2008).

    Article  Google Scholar 

  16. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  CAS  Google Scholar 

  17. Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  CAS  Google Scholar 

  18. Joannopoulos, J. D., Johnson, H. G., Winn, J. N. & Meade, R. D., Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

    Google Scholar 

  19. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    Article  CAS  Google Scholar 

  20. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  CAS  Google Scholar 

  21. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  22. Li, Z. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    Article  CAS  Google Scholar 

  23. Horng, J. et al. Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2010).

    Article  Google Scholar 

  24. Mak, K. F., Shan, J. & Heinz, T. F. Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons. Phys. Rev. Lett. 106, 046401 (2011).

    Article  Google Scholar 

  25. Yan, H. et al. Infrared spectroscopy of wafer-scale graphene. ACS Nano 5, 9854–9860 (2011).

    Article  CAS  Google Scholar 

  26. Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nature Phys. 7, 48–51 (2010).

    Article  Google Scholar 

  27. Tinkham, M. Energy gap interpretation of experiments on infrared transmission through superconducting thin films. Phys. Rev. 104, 845–846 (1956).

    Article  CAS  Google Scholar 

  28. Farmer, D. B. et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9, 4474–4478 (2009).

    Article  CAS  Google Scholar 

  29. Falkovsky, L. A. & Pershoguba, S. S. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007).

    Article  Google Scholar 

  30. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  31. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

Download references


The authors are grateful to B. Ek and J. Bucchignano for technical assistance and DARPA for partial financial support through the CERA programme (contract no. FA8650-08-C-7838).

Author information

Authors and Affiliations



F.X., P.A. and H.Y. conceived the experiments. F.X. and H.Y. fabricated the devices. H.Y. performed the measurements and data analysis. X.L. and B.C. grew the chemical vapour deposition graphene. G.T. helped with doping. M.F. helped with the experimental set-ups. Y.W. and W.Z. participated in sample fabrication and characterization. F.X. and H.Y. co-wrote the manuscript. P.A. provided suggestions, and all authors commented on the manuscript.

Corresponding authors

Correspondence to Phaedon Avouris or Fengnian Xia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 449 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yan, H., Li, X., Chandra, B. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech 7, 330–334 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research