A nanomechanical mass sensor with yoctogram resolution

Abstract

Nanomechanical resonators have been used to weigh cells, biomolecules and gas molecules1,2,3,4, and to study basic phenomena in surface science, such as phase transitions5 and diffusion6,7. These experiments all rely on the ability of nanomechanical mass sensors to resolve small masses. Here, we report mass sensing experiments with a resolution of 1.7 yg (1 yg = 10−24 g), which corresponds to the mass of one proton. The resonator is a carbon nanotube of length 150 nm that vibrates at a frequency of almost 2 GHz. This unprecedented level of sensitivity allows us to detect adsorption events of naphthalene molecules (C10H8), and to measure the binding energy of a xenon atom on the nanotube surface. These ultrasensitive nanotube resonators could have applications in mass spectrometry, magnetometry and surface science.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Device and characterization.
Figure 2: Measuring mass resolution.
Figure 3: Adsorption of xenon atoms and naphthalene molecules.
Figure 4: Binding energy between a xenon atom and a nanotube.

References

  1. 1

    Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Naik, A. K., Hanay, M. S., Hiebert, W. K., Feng, X. L. & Roukes, M. L. Towards single-molecule nanomechanical mass spectrometry. Nature Nanotech. 4, 445–450 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Li, M. et al. Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis. Nano Lett. 10, 3899–3903 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Grover, W. H et al. Measuring single-cell density. Proc. Natl Acad. Sci. USA 108, 10992–10996 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Wang, Z. et al. Phase transitions of adsorbed atoms on the surface of a carbon nanotube. Science 327, 552–555 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Yang, Y. T., Callegari, C., Feng, X. L. & Roukes, M. L. Surface adsorbate fluctuations and noise in nanoelectromechanical systems. Nano Lett. 11, 1753–1759 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Atalaya, J., Isacsson, A. & Dykman, M. I. Diffusion-induced bistability of driven nanomechanical resonators. Phys. Rev. Lett. 106, 227202 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Ekinci, K. L., Yang, Y. T. & Roukes, M. L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Cleland, A. N. Thermomechanical noise limits on parametric sensing with nanomechanical resonators. New J. Phys. 7, 235 (2005).

    Article  Google Scholar 

  10. 10

    Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Lassagne, B., Garcia-Sanchez, D., Aguasca, A. & Bachtold, A. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 8, 3735–3738 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Chiu, H-Y., Hung, P., Postma, H. W. Ch. & Bockrath, M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 8, 4342–4346 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 3, 533–537 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Gouttenoire, V. et al. Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: towards a nanotube cell phone. Small 6, 1060–1065 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Eichler, A. et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nature Nanotech. 6, 339–342 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Lassagne, B., Tarakanov, Y., Kinaret, J., Garcia-Sanchez, D. & Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1106 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Vidali, G., Ihm, G., Kim, H-Y. & Cole, M. W. Potentials of physical adsorption. Surf. Sci. Rep. 12, 135–181 (1991).

    Article  Google Scholar 

  20. 20

    Dillon, A. C. et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Teizer, W., Hallock, R. B., Dujardin, E. & Ebbesen, T. W. 4He desorption from single wall carbon nanotube bundles: a one-dimensional adsorbate. Phys. Rev. Lett. 82, 5305–5308 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Ulbricht, H., Kriebel, J., Moos, G. & Hertel, T. Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles. Chem. Phys. Lett. 363, 252–260 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Shi, W. & Johnson, J. K. Gas adsorption on heterogeneous single-walled carbon nanotube bundles. Phys. Rev. Lett. 91, 015504 (2003).

    Article  Google Scholar 

  24. 24

    Ulbricht, H., Zacharia, R., Cindir, N. & Hertel, T. Thermal desorption of gases and solvents from graphite and carbon nanotube surfaces. Carbon 44, 2931–2942 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Lassagne, B., Ugnati, D. & Respaud, M. Ultrasensitive magnetometers based on carbon-nanotube mechanical resonators. Phys. Rev. Lett. 107, 130801 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Goldsmith, B. R. et al. Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 315, 77–81 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Chaste, J., Sledzinska, M., Zdrojek, M., Moser, J. & Bachtold, A. High-frequency nanotube mechanical resonators. Appl. Phys. Lett. 99, 213502 (2011).

    Article  Google Scholar 

  28. 28

    Hüttel, A. K. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).

    Article  Google Scholar 

  29. 29

    Zacharia, R., Ulbricht, H. & Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69, 155406 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Union through the RODIN-FP7 project, the ERC carbonNEMS project and a Marie Curie grant (no. 271938), the Spanish ministry of science (FIS2009-11284, TEC2009-06986, FIS2009-12721-C04-03, CSD2007-00041) and the Catalan government (AGAUR, SGR). The authors also thank B. Thibeault (UC Santa Barbara) for help with the fabrication.

Author information

Affiliations

Authors

Contributions

J.C. fabricated the devices, developed the measurement set-up and performed the measurements. A.E., J.M. and G.C. provided support regarding fabrication, measurement analysis and development of the set-up, respectively. R.R. carried out the calculations of the binding energy. A.B. supervised the work. All authors contributed to discussing the results and writing the manuscript.

Corresponding author

Correspondence to A. Bachtold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1896 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chaste, J., Eichler, A., Moser, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotech 7, 301–304 (2012). https://doi.org/10.1038/nnano.2012.42

Download citation

Further reading