Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A mechanical metamaterial made from a DNA hydrogel


Metamaterials are artificial substances that are structurally engineered to have properties not typically found in nature. To date, almost all metamaterials have been made from inorganic materials such as silicon and copper1,2, which have unusual electromagnetic or acoustic properties1,2,3,4,5 that allow them to be used, for example, as invisible cloaks6,7,8,9, superlenses10,11,12 or super absorbers for sound13. Here, we show that metamaterials with unusual mechanical properties can be prepared using DNA as a building block. We used a polymerase enzyme to elongate DNA chains and weave them non-covalently into a hydrogel. The resulting material, which we term a meta-hydrogel, has liquid-like properties when taken out of water and solid-like properties when in water. Moreover, upon the addition of water, and after complete deformation, the hydrogel can be made to return to its original shape. The meta-hydrogel has a hierarchical internal structure and, as an example of its potential applications, we use it to create an electric circuit that uses water as a switch.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the stepwise approach for DNA hydrogel synthesis.
Figure 2: Characterization of the R4M16 DNA hydrogel.
Figure 3: Liquid- and solid-like properties of the R4M16 hydrogel.
Figure 4: Morphology of the DNA hydrogel.
Figure 5: Electric circuit switch formed using the liquid- and solid-like properties of DNA meta-hydrogel.


  1. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  CAS  Google Scholar 

  2. Liu, Y. M. & Zhang, X. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494–2507 (2011).

    Article  CAS  Google Scholar 

  3. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  CAS  Google Scholar 

  4. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  CAS  Google Scholar 

  5. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  CAS  Google Scholar 

  6. Alu, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005).

    Article  Google Scholar 

  7. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  CAS  Google Scholar 

  8. Liu, R. et al. Broadband ground-plane cloak. Science 323, 366–369 (2009).

    Article  CAS  Google Scholar 

  9. Fridman, M., Farsi, A., Okawachi, Y. & Gaeta, A. L. Demonstration of temporal cloaking. Nature 481, 62–65 (2012).

    Article  CAS  Google Scholar 

  10. Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004).

    Article  Google Scholar 

  11. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  CAS  Google Scholar 

  12. Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nature Mater. 11, 432–435 (2012).

    Article  CAS  Google Scholar 

  13. Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Commun. 3, 756 (2012).

    Article  Google Scholar 

  14. Roh, Y. H., Ruiz, R. C. H., Peng, S. M., Lee, J. B. & Luo, D. Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730–5744 (2011).

    Article  CAS  Google Scholar 

  15. Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. L. Building plasmonic nanostructures with DNA. Nature Nanotech. 6, 268–276 (2011).

    Article  CAS  Google Scholar 

  16. Li, Y. G. et al. Controlled assembly of dendrimer-like DNA. Nature Mater. 3, 38–42 (2004).

    Article  CAS  Google Scholar 

  17. Li, Y. G., Cu, Y. T. H. & Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nature Biotechnol. 23, 885–889 (2005).

    Article  CAS  Google Scholar 

  18. Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nature Mater. 5, 797–801 (2006).

    Article  CAS  Google Scholar 

  19. Lee, J. B. et al. Multifunctional nanoarchitectures from DNA-based ABC monomers. Nature Nanotech. 4, 430–436 (2009).

    Article  CAS  Google Scholar 

  20. Park, N., Um, S. H., Funabashi, H., Xu, J. F. & Luo, D. A cell-free protein-producing gel. Nature Mater. 8, 432–437 (2009).

    Article  CAS  Google Scholar 

  21. Feng, X. L. et al. Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA. Angew. Chem. Int. Ed. 48, 5316–5321 (2009).

    Article  CAS  Google Scholar 

  22. Sil, D., Lee, J. B., Luo, D., Holowka, D. & Baird, B. Trivalent ligands with rigid DNA spacers reveal structural requirements for IgE receptor signaling in RBL mast cells. ACS Chem. Biol. 2, 674–684 (2007).

    Article  CAS  Google Scholar 

  23. Cheng, E. J. et al. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem. Int. Ed. 48, 7660–7663 (2009).

    Article  CAS  Google Scholar 

  24. Rattanakiat, S., Nishikawa, M., Funabashi, H., Luo, D. & Takakura, Y. The assembly of a short linear natural cytosine–phosphate–guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials 30, 5701–5706 (2009).

    Article  CAS  Google Scholar 

  25. Dean, F. B., Nelson, J. R., Giesler, T. L. & Lasken, R. S. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11, 1095–1099 (2001).

    Article  CAS  Google Scholar 

  26. Lee, J. B., Shai, A. S., Campolongo, M. J., Park, N. & Luo, D. Three-dimensional structure and thermal stability studies of DNA nanostructures by energy transfer spectroscopy. ChemPhysChem 11, 2081–2084 (2010).

    Article  CAS  Google Scholar 

  27. Roh, Y. H. et al. Photocrosslinked DNA nanospheres for drug delivery. Macromol. Rapid Commun. 31, 1207–1211 (2010).

    Article  CAS  Google Scholar 

  28. Cauich-Rodriguez, J. V., Deb, S. & Smith, R. Effect of cross-linking agents on the dynamic mechanical properties of hydrogel blends of poly(acrylic acid)–poly(vinyl alcohol vinyl acetate). Biomaterials 17, 2259–2264 (1996).

    Article  CAS  Google Scholar 

  29. Xing, Y. Z. et al. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv. Mater. 23, 1117–1121 (2011).

    Article  CAS  Google Scholar 

Download references


The authors thank L. Archer and R. Mallavajula for helping with the mechanical test and C. Hui for insightful discussions. The authors also thank J. March, J. Hunter and T. Walter for proofreading this manuscript and Z. Li for discussions and suggestions. L.C. acknowledges support from the CAS/SAFEA International Partnership Program for Creative Research Teams. The present work was partially supported by grants from the United States Department of Agriculture (USDA) and the Department of Defense (DOD).

Author information

Authors and Affiliations



J.B.L., S.P. and D.L. designed the experiments. J.B.L., S.P., Y.H.R., H.F., N.P. and E.R. carried out the experiments. J.B.L., S.P., Y.H.R., H.F., D.Y., L.C., R.L., M.W. and D.L. contributed to the data analysis. J.B.L., S.P., Y.H.R., D.Y., R.L. and D.L. wrote the manuscript.

Corresponding author

Correspondence to Dan Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2374 kb)

Supplementary movie S1

Supplementary movie S1 (WMV 2294 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Peng, S., Yang, D. et al. A mechanical metamaterial made from a DNA hydrogel. Nature Nanotech 7, 816–820 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research