Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap

Abstract

An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should induce a high signal enhancement, generate a reproducible and uniform response, and should be easy to synthesize. Many SERS-active nanostructures have been investigated, but they suffer from poor reproducibility of the SERS-active sites, and the wide distribution of their enhancement factor values results in an unquantifiable SERS signal. Here, we show that DNA on gold nanoparticles facilitates the formation of well-defined gold nanobridged nanogap particles (Au-NNP) that generate a highly stable and reproducible SERS signal. The uniform and hollow gap (1 nm) between the gold core and gold shell can be precisely loaded with a quantifiable amount of Raman dyes. SERS signals generated by Au-NNPs showed a linear dependence on probe concentration (R2 > 0.98) and were sensitive down to 10 fM concentrations. Single-particle nano-Raman mapping analysis revealed that >90% of Au-NNPs had enhancement factors greater than 1.0 × 108, which is sufficient for single-molecule detection, and the values were narrowly distributed between 1.0 × 108 and 5.0 × 109.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Surface DNA-mediated synthesis and characterization of DNA-anchored nanobridged nanogap particles.
Figure 2: Three-dimensional finite-element calculation of Au-NNP and silica-insulated concentric structure.
Figure 3: Excitation wavelength and dye position dependence of SERS of Au-NNPs in solution.
Figure 4: Comparison of Raman signal intensity as a function of the number of Raman dye molecules in the nanogap of the Au-NNPs and gold shell thickness.
Figure 5: Solution-based Raman intensity plots for two different Au-NNP structures as a function of probe concentration.
Figure 6: Large-scale AFM-correlated single-particle nano-Raman mapping analysis on the Au-NNPs and SERS enhancement factor distributions.

References

  1. Cao, Y. C., Jin, R. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    Article  CAS  Google Scholar 

  2. Bingham, J. M., Willets, K. A., Shah, N. C., Andrews, D. Q. & Van Duyne, R. P. Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J. Phys. Chem. C 113, 16839–16842 (2009).

    Article  CAS  Google Scholar 

  3. Medley, C. D., Smith, J. E., Tang, Z., Wu, Y. & Tan, W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 80, 1067–1072 (2008).

    Article  CAS  Google Scholar 

  4. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  5. Park, H-G. et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photon. 2, 622–626 (2008).

    Article  CAS  Google Scholar 

  6. Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 6, 741–745 (2005).

    Article  Google Scholar 

  7. Qian, X-M. & Nie, S. M. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912–920 (2008).

    Article  CAS  Google Scholar 

  8. Jiang, J., Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964–9972 (2003).

    Article  CAS  Google Scholar 

  9. Li, W., Camargo, P. H. C., Lu, X. & Xia, Y. Dimers of silver nanosheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9, 485–490 (2009).

    Article  CAS  Google Scholar 

  10. Graham, D., Thompson, D. G., Smith, W. E. & Faulds, K. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nature Nanotech. 3, 548–551 (2008).

    Article  CAS  Google Scholar 

  11. Lee, S. J., Morrill, A. R. & Moskovits, M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 128, 2200–2201 (2006).

    Article  CAS  Google Scholar 

  12. Tripp, R. A., Dluhy, R. A. & Zhao, Y. Novel nanostructures for SERS biosensing. Nanotoday 3, 31–37 (2008).

    Article  CAS  Google Scholar 

  13. Ward, D. R. et al. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 7, 1396–1400 (2007).

    Article  CAS  Google Scholar 

  14. Zuloaga, J., Prodan, E., Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009).

    Article  CAS  Google Scholar 

  15. Etchegoin, P. G. & Le Ru, E. C. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).

    Article  CAS  Google Scholar 

  16. Park, W-H. & Kim, Z. H. Charge transfer enhancement in the SERS of a single molecule. Nano Lett. 10, 4040–4048 (2010).

    Article  CAS  Google Scholar 

  17. Fang, Y., Seong, N-H. & Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388–392 (2008).

    Article  CAS  Google Scholar 

  18. Im, H., Bantz, K. C., Lindquist, N. C., Haynes, C. L. & Oh, S-H. Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett. 10, 2231–2236 (2010).

    Article  CAS  Google Scholar 

  19. Kubo, W. & Fujikawa, S. Au double nanopillars with nanogap for plasmonic sensor. Nano Lett. 11, 8–15 (2011).

    Article  CAS  Google Scholar 

  20. Jesse, T., Pavaskar, P., Echternach, P. M., Muller, R. E. & Cronin, S. B. Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. Nano Lett. 10, 2749–2754 (2010).

    Article  Google Scholar 

  21. Qin, L. et al. Designing, fabricating, and imaging Raman hot spots. Proc. Natl Acad. Sci. USA 103, 13300–13303 (2006).

    Article  CAS  Google Scholar 

  22. Qian, X et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnol. 26, 83–90 (2008).

    Article  CAS  Google Scholar 

  23. Zavaleta, C. L. et al. Multiplexed imaging of surface-enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 13511–13516 (2009).

    Article  CAS  Google Scholar 

  24. Lim, D-K., Jeon, K-S., Kim, H. M., Nam, J-M. & Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Mater. 9, 60–67 (2010).

    Article  CAS  Google Scholar 

  25. Kneipp, J., Kneipp, H., McLaughlin, M., Brown, D. & Kneipp, K. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett. 6, 2225–2231 (2006).

    Article  CAS  Google Scholar 

  26. Brown, K. R. & Natan, M. J. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14, 726–728 (1998).

    Article  CAS  Google Scholar 

  27. Ma, Z. & Sui, S. Naked-eye sensitive detection of immunoglubulin G by enlargement of Au nanoparticles in vitro. Angew Chem. Int. Ed. 41, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  28. Wustholz, K. L. et al. Structure–activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 10903–10910 (2010).

    Article  CAS  Google Scholar 

  29. Anil, K., Kodali, A. K., Llorad, X. & Bhargava, R. Optimally designed nanolayered metal–dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays. Proc. Natl Acad. Sci. USA 107, 13620–13625 (2009).

    Google Scholar 

  30. Sonnefraud, Y. et al. Experimental realization of subradiant, superradiant, and Fano resonance in ring/disk plasmonic nanocavities. ACS Nano 4, 1664–1670 (2010).

    Article  CAS  Google Scholar 

  31. Zhang, P. & Guo, Y. Surface-enhanced Raman scattering inside metal nanoshells. J. Am. Chem. Soc. 131, 3808–3809 (2009).

    Article  CAS  Google Scholar 

  32. Stokes, R. J. et al. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles. Small 3, 1593–1601 (2007).

    Article  CAS  Google Scholar 

  33. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  34. Bardhan, R. et al. Nanosphere-in-a-nanoshell: a simple nanomatryushka. J. Phys. Chem. C 114, 7378–7383 (2010).

    Article  CAS  Google Scholar 

  35. Shen, A. et al. Triplex Au–Ag–C core–shell nanoparticles as a novel Raman label. Adv. Funct. Mater. 20, 969–975 (2010).

    Article  CAS  Google Scholar 

  36. Küstner, B. et al. SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem. Int. Ed. 48, 1950–1953 (2009).

    Article  Google Scholar 

  37. Zhang, Z. et al. Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Lett. 9, 4505–4509 (2009).

    Article  CAS  Google Scholar 

  38. Faulds, K., Smith, W. E. & Graham, D. Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal. Chem. 76, 412–417 (2004).

    Article  CAS  Google Scholar 

  39. Schlücker, S. SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10, 1344–1354 (2009).

    Article  Google Scholar 

  40. Murphy, C. J. et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008).

    Article  CAS  Google Scholar 

  41. Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.D.S. was supported by KRICT (KK-0904-02, SI-1110), the Nano R&D Program (No. 2009-0082861), the Pioneer Research Center Program of NRF (No. 2009-0081511), the Development of Advanced Scientific Analysis Instrumentation Project of KRISS by MEST and the Eco-technopia 21 Project by KME. J-M.N. was supported by the 21C Frontier Functional Proteomics Project (FPR08-A2-150) and the Nano R&D program (2008-02890) through the National Research Foundation of Korea (NRF) from the Ministry of Education, Science and Technology. The authors would also like to acknowledge financial support from the Industrial Core Technology Development Program of the Ministry of Knowledge Economy (nos 10033183 and 10037397) and the KRICT OASIS Project from the Korea Research Institute of Chemical Technology. D-K.L. acknowledges financial support from the CJ Pharmaceutical Research Institute. K-S.J. acknowledges support by the Public Welfare & Safety Research Program through NRF funded by MEST (2010-0020-795).

Author information

Authors and Affiliations

Authors

Contributions

J-M.N., D-K.L. and Y.D.S. conceived the initial idea. J-M.N. designed synthetic schemes for the Au-NNPs, and D-K.L. and J-M.N. synthesized and characterized Au-NNPs with partial contributions from J-H.H. K-S.J. and D-K.L. obtained Raman spectra and AFM images under the guidance of Y.D.S. and J-M.N. Y.D.S. designed single-particle nano-Raman mapping experiments, and K-S.J. and D-K.L. carried out the single-particle measurements. K-S.J. calculated the EFs. H.K. and S.K. carried out three-dimensional finite-element method calculations. J-M.N., D-K.L. and Y.D.S. wrote the article with partial contributions from K-S.J., J-H.H., H.K. and S.K.

Corresponding authors

Correspondence to Yung Doug Suh or Jwa-Min Nam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1760 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lim, DK., Jeon, KS., Hwang, JH. et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nature Nanotech 6, 452–460 (2011). https://doi.org/10.1038/nnano.2011.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.79

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research