Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoparticles reduce nickel allergy by capturing metal ions

Abstract

Approximately 10% of the population in the USA1,2 suffer from nickel allergy3,4,5, and many are unable to wear jewellery or handle coins and other objects that contain nickel6,7,8,9,10. Many agents have been developed to reduce the penetration of nickel through skin11,12, but few formulations are safe and effective13,14,15. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Capture efficiency of nickel and other metals by CaCO3 and CaPO4 nanoparticles.
Figure 2: Thin coating of CaCO3 or CaPO4 nanoparticles prevents penetration of nickel ions into the skin.
Figure 3: In vitro experiment using isolated pig skin.
Figure 4: In vivo nickel challenge experiments.

References

  1. Jacob, S. E., Moennich, J. N., McKean, B. A., Zirwas, M. J. & Taylor, J. S. Nickel allergy in the United States: a public health issue in need of a ‘nickel directive’. J. Am. Acad. Dermatol. 60, 1067–1069 (2009).

    Article  Google Scholar 

  2. Marks, J. G. Jr et al. North American Contact Dermatitis Group patch-test results, 1996–1998. Arch. Dermatol. 136, 272–273 (2000).

    Article  Google Scholar 

  3. Hidaka, S., Okamoto, Y. & Abe, K. Elutions of metal ions from dental casting alloys and their effect on calcium phosphate precipitation and transformation. J. Biomed. Mater. Res. 28, 175–180 (1994).

    Article  CAS  Google Scholar 

  4. Raison-Peyron, N., Guillard, O., Khalil, Z., Guilhou, J. J. & Guillot, B. Nickel-elicited systemic contact dermatitis from a peripheral intravenous catheter. Contact Dermatitis 53, 222–225 (2005).

    Article  CAS  Google Scholar 

  5. Nosbaum, A. et al. Nickel-induced systemic allergic dermatitis from a sacral neurostimulator. Contact Dermatitis 59, 319–320 (2008).

    Article  CAS  Google Scholar 

  6. Luo, J. & Bercovitch, L. Cellphone contact dermatitis with nickel allergy. Can. Med. Assoc. J. 178, 23–24 (2008).

    Article  Google Scholar 

  7. Suneja, T., Flanagan, K. H. & Glaser, D. A. Blue-jean button nickel: prevalence and prevention of its release from buttons. Dermatitis 18, 208–211 (2007).

    Article  Google Scholar 

  8. Heim, K. E. & McKean, B. A. Children's clothing fasteners as a potential source of exposure to releasable nickel ions. Contact Dermatitis 60, 100–105 (2009).

    Article  CAS  Google Scholar 

  9. Nestle, F. O., Speidel, H. & Speidel, M. O. Metallurgy: high nickel release from 1- and 2-euro coins. Nature 419, 132 (2002).

    Article  CAS  Google Scholar 

  10. Bruckner, A. L., Weston, W. L. & Morelli, J. G. Does sensitization to contact allergens begin in infancy? Pediatrics 105, e3 (2000).

    Article  CAS  Google Scholar 

  11. Memon, A. A., Molokhia, M. M. & Friedmann, P. S. The inhibitory effects of topical chelating agents and antioxidants on nickel-induced hypersensitivity reactions. J. Am. Acad. Dermatol. 30, 560–565 (1994).

    Article  CAS  Google Scholar 

  12. Wohrl, S. et al. A cream containing the chelator DTPA (diethylenetriaminepenta-acetic acid) can prevent contact allergic reactions to metals. Contact Dermatitis 44, 224–228 (2001).

    Article  CAS  Google Scholar 

  13. Kaaber, K., Menne, T., Tjell, J. C. & Veien, N. Antabuse treatment of nickel dermatitis. Chelation—a new principle in the treatment of nickel dermatitis. Contact Dermatitis 5, 221–228 (1979).

    Article  CAS  Google Scholar 

  14. Christensen, O. B. & Kristensen, M. Treatment with disulfiram in chronic nickel hand dermatitis. Contact Dermatitis 8, 59–63 (1982).

    Article  CAS  Google Scholar 

  15. Hopfer, S. M. et al. Increased nickel concentrations in body fluids of patients with chronic alcoholism during disulfiram therapy. Res. Commun. Chem. Pathol. Pharmacol. 55, 101–109 (1987).

    CAS  Google Scholar 

  16. White, B. R., Stackhouse, B. T. & Holcombe, J. A. Magnetic gamma-Fe(2)O(3) nanoparticles coated with poly-L-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J. Hazard. Mater. 161, 848–853 (2009).

    Article  CAS  Google Scholar 

  17. Huhtinen, P. et al. Synthesis, characterization, and application of Eu(III), Tb(III), Sm(III), and Dy(III) lanthanide chelate nanoparticle labels. Anal. Chem. 77, 2643–2648 (2005).

    Article  CAS  Google Scholar 

  18. Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    Article  CAS  Google Scholar 

  19. Stone, F. G. A. & West, R. Advances in Organometallic Chemistry Vol. 17 (Academic, 1979).

    Google Scholar 

  20. Pearson, R. G. Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ. 64, 561–567 (1987).

    Article  CAS  Google Scholar 

  21. Kuo, T. R. et al. Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials 30, 3002–3008 (2009).

    Article  CAS  Google Scholar 

  22. Midander, K., Pan, J., Wallinder, I. O., Heim, K. & Leygraf, C. Nickel release from nickel particles in artificial sweat. Contact Dermatitis 56, 325–330 (2007).

    Article  CAS  Google Scholar 

  23. Matienzo, L. J., Yin, L. I., Grim, S. O. & Swartz, W. E. Jr X-ray photoelectron spectroscopy of nickel compounds. Inorg. Chem. 12, 2762–2769 (1973).

    Article  CAS  Google Scholar 

  24. Briggs, D. & Seah, M. P. Practical Surface Analysis: Auger and X-Ray Photoelectron Spectroscopy 2nd edn, Vol. 1 (Wiley, 1990).

    Google Scholar 

  25. Fullerton, A. & Menne, T. In vitro and in vivo evaluation of the effect of barrier gels in nickel contact allergy. Contact Dermatitis 32, 100–106 (1995).

    Article  CAS  Google Scholar 

  26. van Ketel, W. G. & Bruynzeel, D. P. Chelating effect of EDTA on nickel. Contact Dermatitis 11, 311–314 (1984).

    Article  CAS  Google Scholar 

  27. Kimura, M. & Kawada, A. Contact dermatitis due to trisodium ethylenediaminetetraacetic acid (EDTA) in a cosmetic lotion. Contact Dermatitis 41, 341 (1999).

    Article  CAS  Google Scholar 

  28. Soga, F., Izawa, K., Inoue, T., Katoh, N. & Kishimoto, S. Contact dermatitis due to disodium ethylenediaminetetraacetic acid in cosmetics and shampoo. Contact Dermatitis 49, 105 (2003).

    Article  Google Scholar 

  29. Atrux-Tallau, N. et al. Effects of glycerol on human skin damaged by acute sodium lauryl sulphate treatment. Arch. Dermatol. Res. 302, 435–441 (2010).

    Article  CAS  Google Scholar 

  30. Fluhr, J. W. et al. Glycerol accelerates recovery of barrier function in vivo. Acta. Derm. Venereol. 79, 418–421 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Kimball from the Massachusetts General Hospital for helpful discussions. This work was funded by start-up funds from the Brigham and Women's Hospital (J.M.K.). P.K.V. acknowledges the Ewing Marion Kauffman Foundation for an entrepreneur postdoctoral fellowship. The authors also thank D. Blankschtein and B. Polat for the generous gift of pigskin, as well as the MIT Center for Material Science Engineering Imaging facility and P. Boisvert for assistance, and S. Sonis for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.K.V. and J.M.K. conceived and designed the experiments, analysed the data and co-wrote the manuscript. R.R.A. helped design the experiments and write the manuscript.

Corresponding author

Correspondence to Jeffrey M. Karp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1098 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vemula, P., Anderson, R. & Karp, J. Nanoparticles reduce nickel allergy by capturing metal ions. Nature Nanotech 6, 291–295 (2011). https://doi.org/10.1038/nnano.2011.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.37

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research