Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics



Handling and mixing ultrasmall volumes of reactants in parallel can increase the throughput1,2 and complexity3 of screening assays while simultaneously reducing reagent consumption1. Microfabricated silicon and plastic can provide reliable fluidic devices4,5,6,7,8, but cannot typically handle total volumes smaller than 1 × 10–12 l. Self-assembled soft matter nanocontainers9,10,11,12,13,14,15,16 can in principle significantly improve miniaturization and biocompatibility, but exploiting their full potential is a challenge due to their small dimensions17. Here, we show that small unilamellar lipid vesicles can be used to mix volumes as small as 1 × 10–19 l in a reproducible and highly parallelized fashion. The self-enclosed nanoreactors are functionalized with lipids of opposite charge to achieve reliable fusion. Single vesicles encapsulating one set of reactants are immobilized on a glass surface and then fused with diffusing vesicles of opposite charge that carry a complementary set of reactants. We find that 85% of the 1 × 106 cm–2 surface-tethered nanoreactors undergo non-deterministic fusion, which is leakage-free in all cases, and the system allows up to three to four consecutive mixing events per nanoreactor.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mixing of subattolitre volumes by fusion of SUVs of opposite charge.
Figure 2: Characterization of operational performance of the platform.
Figure 3: Consecutive mixing events triggered in single target reactors.


  1. 1

    Metzker, M. L. Sequencing technologies—the next generation. Nature Rev. Genet. 11, 31–46 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nature Rev. Drug. Discov. 5, 210–218 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Sauer, S. et al. Miniaturization in functional genomics and proteomics. Nature Rev. Genet. 6, 465–476 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Psaltis, D., Quake, S. R. & Yang, C. H. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Atencia, J. & Beebe, D. J. Controlled microfluidic interfaces. Nature 437, 648–655 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Walt, D. R. Fibre optic microarrays. Chem. Soc. Rev. 39, 38–50 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Chiu, D. T. et al. Chemical transformations in individual ultrasmall biomimetic containers. Science 283, 1892–1895 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Lizana, L. et al. Controlling chemistry by geometry in nanoscale systems. Annu. Rev. Phys. Chem. 60, 449–468 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Miller, O. J. et al. Directed evolution by in vitro compartmentalization. Nature Methods 3, 561–570 (2006).

    CAS  Article  Google Scholar 

  12. 12

    van Dongen, S. F. M. et al. Biohybrid polymer capsules. Chem. Rev. 109, 6212–6274 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Bolinger, P. Y., Stamou, D. & Vogel, H. An integrated self-assembled nanofluidic system for controlled biological chemistries. Angew. Chem. Int. Ed. 47, 5544–5549 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Cisse, I., Okumus, B., Joo, C. & Ha, T. J. Fueling protein–DNA interactions inside porous nanocontainers. Proc. Natl Acad. Sci. USA 104, 12646–12650 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Vriezema, D. M. et al. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. Int. Ed. 46, 7378–7382 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Chiu, D. T. & Lorenz, R. M. Chemistry and biology in femtoliter and picoliter volume droplets. Acc. Chem. Res. 42, 649–658 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Christensen, S. M. & Stamou, D. Surface-based lipid vesicle reactor systems: fabrication and applications. Soft Matter 3, 828–836 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Boukobza, E., Sonnenfeld, A. & Haran, G. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J. Phys. Chem. B 105, 12165–12170 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Stamou, D., Duschl, C., Delamarche, E. & Vogel, H. Self-assembled microarrays of attoliter molecular vessels. Angew. Chem. Int. Ed. 42, 5580–5583 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Lei, G. H. & MacDonald, R. C. Lipid bilayer vesicle fusion: intermediates captured by high-speed microfluorescence spectroscopy. Biophys. J. 85, 1585–1599 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Bendix, P. M., Pedersen, M. S. & Stamou, D. Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 106, 12341–12346 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Hatzakis, N. S. et al. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nature Chem. Biol. 5, 835–841 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Lohse, B., Bolinger, P. Y. & Stamou, D. Encapsulation efficiency measured on single small unilamellar vesicles. J. Am. Chem. Soc. 130, 14372–14373 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Kunding, A. H., Mortensen, M. W., Christensen, S. M. & Stamou, D. A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys. J. 95, 1176–1188 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Yoon, T. Y. et al. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl Acad. Sci. USA 103, 19731–19736 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Christensen, S. M., Mortnesen, M. W. & Stamou, D. G. Single vesicle assaying of SNARE-synaptotagmin-driven fusion reveals fast and slow modes of both docking and fusion and intrasample heterogeneity. Biophys. J. 100, 957–967 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Haluska, C. K. et al. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc. Natl Acad. Sci. USA 103, 15841–15846 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Chan, Y. H. M., van Lengerich, B. & Boxer, S. G. Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3, Fa17–Fa21 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nature Chem. Biol. 5, 647–654 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Zhou, H. X., Rivas, G. N. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    CAS  Article  Google Scholar 

Download references


D.S. would like to acknowledge financial support from the Lundbeck Foundation Center for Biomembranes in Nanomedicine, the Danish Councils for Independent and Strategic Research and the University of Copenhagen programmes of excellence ‘UNIK Synthetic Biology’, ‘Single Molecule Nanoscience’ and ‘BioScaRT’.

Author information




D.S. designed and supervised the project. S.M.C. and P-Y.B. conducted most experiments and data analysis and contributed equally to this work. S.M.C. and D.S. wrote the paper. All authors helped design experiments, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Dimitrios Stamou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 766 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christensen, S., Bolinger, PY., Hatzakis, N. et al. Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics. Nature Nanotech 7, 51–55 (2012). https://doi.org/10.1038/nnano.2011.185

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research