Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocurrent mapping of near-field optical antenna resonances

Abstract

An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (50 nm) and wavelength-scale (1 µm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Near-field SOI detector platform architecture.
Figure 2: Spatial and spectral photocurrent mapping of a wedge antenna.
Figure 3: Analysis of resonant behaviour using two-dimensional FDFD simulations.
Figure 4: Theoretical and experimental photocurrent enhancement maps.
Figure 5: Spatial and spectral mapping of photocurrent enhancement from a silicon nanowire optical antenna.

Similar content being viewed by others

References

  1. Mühlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  Google Scholar 

  2. Alù, A. & Engheta, N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nature Photon. 2, 307–310 (2008).

    Article  Google Scholar 

  3. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

    Article  Google Scholar 

  4. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    Article  CAS  Google Scholar 

  5. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  CAS  Google Scholar 

  6. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  CAS  Google Scholar 

  7. Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nature Mater. 8, 643–647 (2009).

    Article  CAS  Google Scholar 

  8. Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).

    Article  CAS  Google Scholar 

  9. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  10. Ishi, T., Fujikata, J., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn J. Appl. Phys. 2 44, L364–L366 (2005).

    Article  CAS  Google Scholar 

  11. De Vlaminck, I., Van Dorpe, P., Lagae, L. & Borghs, G. Local electrical detection of single nanoparticle plasmon resonance. Nano Lett. 7, 703–706 (2007).

    Article  CAS  Google Scholar 

  12. Sundararajan, S. P., Grady, N. K., Mirin, N. & Halas, N. J. Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. Nano Lett. 8, 624–630 (2008).

    Article  CAS  Google Scholar 

  13. Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    Article  CAS  Google Scholar 

  14. White, J. S. et al. Extraordinary optical absorption through subwavelength slits. Opt. Lett. 34, 686–688 (2009).

    Article  CAS  Google Scholar 

  15. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  CAS  Google Scholar 

  16. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  17. Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).

    Article  CAS  Google Scholar 

  18. Stehr, J. et al. Gold nanostoves for microsecond DNA melting analysis. Nano Lett. 8, 619–623 (2008).

    Article  CAS  Google Scholar 

  19. Röntzsch, L., Heinig, K-H., Schuller, J. A. & Brongersma, M. L. Thin film patterning by surface-plasmon-induced thermocapillarity. Appl. Phys. Lett. 90, 044105 (2007).

    Article  Google Scholar 

  20. Achermann, M. et al. Near-field spectroscopy of surface plasmons in flat gold nanoparticles. Opt. Lett. 32, 2254–2256 (2007).

    Article  CAS  Google Scholar 

  21. Olmon, R. L., Krenz, P. M., Jones, A. C., Boreman, G. D. & Raschke, M. B. Near-field imaging of optical antenna modes in the mid-infrared. Opt. Express 16, 20295–20305 (2008).

    Article  CAS  Google Scholar 

  22. Vogelgesang, R. et al. Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM). Phys. Status Solidi B 245, 2255–2260 (2008).

    Article  CAS  Google Scholar 

  23. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  Google Scholar 

  24. Novikov, S. M., Beermann, J., Søndergaard, T., Boltasseva, A. E. & Bozhevolnyi, S. I. Two-photon imaging of field enhancement by groups of gold nanostrip antennas. J. Opt. Soc. Am. B 26, 2199–2203 (2009).

    Article  CAS  Google Scholar 

  25. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer, 1995).

    Book  Google Scholar 

  26. Wilson, T. Techniques of optical scanning microscopy. J. Phys. E 22, 532–547 (1989).

    Article  Google Scholar 

  27. Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009).

    Article  CAS  Google Scholar 

  28. Chui, C. O., Okyay, A. & Saraswat, K. Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors. IEEE Photon. Technol. Lett. 15, 1585–1587 (2003).

    Article  Google Scholar 

  29. Søndergaard, T. & Bozhevolnyi, S. Slow-plasmon resonant nanostructures: scattering and field enhancements. Phys. Rev. B 75, 073402 (2007).

    Article  Google Scholar 

  30. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

    Article  Google Scholar 

  31. Søndergaard, T. & Bozhevolnyi, S. I. Strip and gap plasmon polariton optical resonators. Phys. Status Solidi B 245, 9–19 (2008).

    Article  Google Scholar 

  32. Barnard, E. S., White, J. S., Chandran, A. & Brongersma, M. L. Spectral properties of plasmonic resonator antennas. Opt. Express 16, 16529–16537 (2008).

    Article  CAS  Google Scholar 

  33. Søndergaard, T., Beermann, J., Boltasseva, A. & Bozhevolnyi, S. I. Slow-plasmon resonant-nanostrip antennas: analysis and demonstration. Phys. Rev. B 77, 115420 (2008).

    Article  Google Scholar 

  34. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

    Google Scholar 

  35. Logeeswaran, V. J. et al. Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 9, 178–182 (2009).

    Article  Google Scholar 

  36. Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This article was supported by the Center for Advanced Molecular Photovoltaics (award no. KUS-C1-015-21), made by King Abdullah University of Science and Technology (KAUST). The authors also acknowledge support from the Department of Energy (grant DE-FG02-07ER46426) for the realization of the platform and a pilot project of the Center for Cancer Nanotechnology Excellence and Translation (CCNE-T) at Stanford to use this platform to characterize and improve optical antennas for surface-enhanced Raman spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

E.S.B. and M.L.B. conceived and designed the experiments. E.S.B. and R.A.P. designed and fabricated the samples. E.S.B. performed the optical experiments. E.S.B. and M.L.B. co-wrote the manuscript.

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 517 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnard, E., Pala, R. & Brongersma, M. Photocurrent mapping of near-field optical antenna resonances. Nature Nanotech 6, 588–593 (2011). https://doi.org/10.1038/nnano.2011.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing