Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-range electron tunnelling in oligo-porphyrin molecular wires

Abstract

Short chains of porphyrin molecules can mediate electron transport over distances as long as 5–10 nm with low attenuation. This means that porphyrin-based molecular wires could be useful in nanoelectronic and photovoltaic devices, but the mechanisms responsible for charge transport in single oligo-porphyrin wires have not yet been established. Here, based on electrical measurements of single-molecule junctions, we show that the conductance of the oligo-porphyrin wires has a strong dependence on temperature, and a weak dependence on the length of the wire. Although it is widely accepted that such behaviour is a signature of a thermally assisted incoherent (hopping) mechanism, density functional theory calculations and an accompanying analytical model strongly suggest that the observed temperature and length dependence is consistent with phase-coherent tunnelling through the whole molecular junction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure of the oligo-porphyrins.
Figure 2: Single-molecule conductance data for the dimer.
Figure 3: Dependence of conductance of oligo-porphyrins on length.
Figure 4: Dependence of electron transmission on dihedral angle.
Figure 5: Dependence of conductance on temperature.

References

  1. 1

    Sedghi, G. et al. Single molecule conductance of porphyrin wires with ultralow attenuation. J. Am. Chem. Soc. 130, 8582–8583 (2008).

    CAS  Google Scholar 

  2. 2

    Kang, B. K. et al. Length and temperature dependence of electrical conduction through dithiolated porphyrin arrays. Chem. Phys. Lett. 412, 303–306 (2005).

    CAS  Google Scholar 

  3. 3

    Yoon, D. H. et al. Electrical conduction through linear porphyrin arrays. J. Am. Chem. Soc. 125, 11062–11064 (2003).

    CAS  Google Scholar 

  4. 4

    Kiguchi, M., Takahashi, T., Kanehara, M., Teranishi, T. & Murakoshi, K. Effect of end group position on the formation of a single porphyrin molecular junction. J. Phys. Chem. C 113, 9014–9017 (2009).

    CAS  Google Scholar 

  5. 5

    Winters, M. U. et al. Probing the efficiency of electron transfer through porphyrin-based molecular wires. J. Am. Chem. Soc. 129, 4291–4297 (2007).

    CAS  Google Scholar 

  6. 6

    Imahori, H. et al. Modulating charge separation and charge recombination dynamics in porphyrin fullerene linked dyads and triads: Marcus-normal versus inverted region. J. Am. Chem. Soc. 123, 2607–2617 (2001).

    CAS  Google Scholar 

  7. 7

    Guldi, D. M. et al. A molecular tetrad allowing efficient energy storage for 1.6 s at 163 K. J. Phys. Chem. A 108, 541–548 (2004).

    CAS  Google Scholar 

  8. 8

    Grozema, F. C., Houarner-Rassin, C., Prins, P., Siebbeles, L. D. A. & Anderson, H. L. Supramolecular control of charge transport in molecular wires. J. Am. Chem. Soc. 129, 13370–13371 (2007).

    CAS  Google Scholar 

  9. 9

    Leggett, G. J. Surface Analysis — The Principal Techniques 2nd edn (eds Vickerman, J. C. & Gilmore, I. S.) Ch. 9 (Wiley, 2009).

    Google Scholar 

  10. 10

    Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Practice (World Scientific, 2010).

    Google Scholar 

  11. 11

    Choi, S. H., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    CAS  Google Scholar 

  12. 12

    Choi, S. H. et al. Transition from tunneling to hopping transport in long, conjugated oligo-imine wires connected to metals. J. Am. Chem. Soc. 132, 4358–4368 (2010).

    CAS  Google Scholar 

  13. 13

    Selzer, Y., Cabassi, M. A., Mayer, T. S. & Allara, D. L. Thermally activated conduction in molecular junctions. J. Am. Chem. Soc. 126, 4052–4053 (2004).

    CAS  Google Scholar 

  14. 14

    Poot, M. et al. Temperature dependence of three-terminal molecular junctions with sulfur end-functionalized tercyclohexylidenes. Nano Lett. 6, 1031–1035 (2006).

    CAS  Google Scholar 

  15. 15

    Haiss, W. et al. Thermal gating of the single molecule conductance of alkanedithiols. Faraday Discuss. 131, 253–264 (2006).

    CAS  Google Scholar 

  16. 16

    Martin, S. et al. Influence of conformational flexibility on single-molecule conductance in nano-electrical junctions. J. Phys. Chem. C 113, 18884–18890 (2009).

    CAS  Google Scholar 

  17. 17

    Li, X. L. et al. Conductance of single alkanedithiols: conduction mechanism and effect of molecule–electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    CAS  Google Scholar 

  18. 18

    Li, X. L. et al. Thermally activated electron transport in single redox molecules. J. Am. Chem. Soc. 129, 11535–11542 (2007).

    CAS  Google Scholar 

  19. 19

    Diez-Perez, I. et al. Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nature Commun. 1, 3 (2010).

    Google Scholar 

  20. 20

    Chanteau, S. H. & Tour, J. M. Synthesis of potential molecular electronic devices containing pyridine units. Tetrahedron Lett. 42, 3057–3060 (2001).

    CAS  Google Scholar 

  21. 21

    Flatt, A. K. et al. Synthesis and testing of new end-functionalized oligomers for molecular electronics. Tetrahedron 59, 8555–8570 (2003).

    CAS  Google Scholar 

  22. 22

    Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    CAS  Google Scholar 

  23. 23

    Wang, C. S. et al. Oligoyne single molecule wires. J. Am. Chem. Soc. 131, 15647–15654 (2009).

    CAS  Google Scholar 

  24. 24

    Zhou, X. S. et al. Single molecule conductance of dipyridines with conjugated ethene and nonconjugated ethane bridging group. J. Phys. Chem. C 112, 3935–3940 (2008).

    CAS  Google Scholar 

  25. 25

    Li, X. L. et al. Controlling charge transport in single molecules using electrochemical gate. Faraday Discuss. 131, 111–120 (2006).

    Google Scholar 

  26. 26

    Kushmerick, J. G., Whitaker, C. M., Pollack, S. K., Schull, T. L. & Shashidhar, R. Tuning current rectification across molecular junctions. Nanotechnology 15, S489–S493 (2004).

    CAS  Google Scholar 

  27. 27

    Li, C. et al. Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. J. Phys. Condens. Matter 20, 374122 (2008).

    CAS  Google Scholar 

  28. 28

    Xu, B. Q. & Tao, N. J. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Google Scholar 

  29. 29

    Haiss, W. et al. Precision control of single-molecule electrical junctions. Nature Mater. 5, 995–1002 (2006).

    CAS  Google Scholar 

  30. 30

    Haiss, W. et al. Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Phys. Chem. Chem. Phys. 6, 4330–4337 (2004).

    CAS  Google Scholar 

  31. 31

    Haiss, W. et al. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294–15295 (2003).

    CAS  Google Scholar 

  32. 32

    Gol'dshtrakh, M. A., Dorofeev, S. G., Ishchenko, A. A., Kiselev, Y. M. & Kononov, N. N. A comparative analysis of the influence of photo- and thermal activation on the sensor properties of cobalt(II) etioporphyrin films. Russian J. Phys. Chem. A 83, 1775–1780 (2009).

    CAS  Google Scholar 

  33. 33

    Takahashi, K., Horino, K., Komura, T. & Murata, K. Photovoltaic properties of porphyrin thin-films mixed with o-chloranil. Bull. Chem. Soc. Jpn 66, 733–738 (1993).

    CAS  Google Scholar 

  34. 34

    Banerjee, P. et al. Plasmon-induced electrical conduction in molecular devices. ACS Nano 4, 1019–1025.

    CAS  Google Scholar 

  35. 35

    He, J., Forzani, E. S., Nagahara, L. A., Tao, N. J. & Lindsay, S. Charge transport in mesoscopic conducting polymer wires. J. Phys. Condens. Matter 20, 374120 (2008).

    Google Scholar 

  36. 36

    Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal–molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    CAS  Google Scholar 

  37. 37

    Quek, S. Y. et al. Amine-gold linked single-molecule circuits: experiment and theory. Nano Lett. 7, 3477–3482 (2007).

    CAS  Google Scholar 

  38. 38

    Kristensen, I. S., Mowbray, D. J., Thygesen, K. S. & Jacobsen, K. W. Comparative study of anchoring groups for molecular electronics: structure and conductance of Au–S–Au and Au–NH2–Au junctions. J. Phys. Condens. Matter 20 374101 (2008).

    CAS  Google Scholar 

  39. 39

    Rocha, A. R. et al. Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B. 73, 085414 (2006).

    Google Scholar 

  40. 40

    Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    CAS  Google Scholar 

  41. 41

    Winters, M. U. et al. Photophysics of a butadiyne-linked porphyrin dimer: influence of conformational flexibility in the ground and first singlet excited state. J. Phys. Chem. C 111, 7192–7199 (2007).

    CAS  Google Scholar 

  42. 42

    Taylor, P. N. et al. Conjugated porphyrin oligomers from monomer to hexamer. Chem. Commun. 909–910 (1998).

  43. 43

    Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    CAS  Google Scholar 

  44. 44

    Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    CAS  Google Scholar 

  45. 45

    Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC; grant nos EP/D07665X/1, EP/D076552/1 and GR/S84064/01), QinetiQ, the Department of Trade and Industry, the Royal Society and the Northwest Regional Development Agency. The authors thank the EPSRC mass spectrometry service (Swansea) for mass spectra. V.G-S. acknowledges his Ramón y Cajal position and his previous Juan de la Cierva position from the Ministerio de Ciencia e Innovación, Spain. S.M. acknowledges his Juan de la Cierva position from the Ministerio de Ciencia e Innovación, Spain. The NWGrid is thanked for computing resources.

Author information

Affiliations

Authors

Contributions

G.S. performed experimental conductance measurements and analysed the data, in part with the assistance of S.M. V.G-S. performed DFT computations and analysed computational data. L.J.E. synthesized and chemically characterized the compounds. M.E. originated the analytical model and further developed it in consultation with C.J.L. N.B. performed supporting STM characterization measurements and contributed to numerical calculations of the Lorentzian model. G.S., V.G-S., H.L.A., C.J.L., S.J.H., M.E. and R.J.N. were involved in writing the manuscript and supporting information. H.L.A., C.J.L., D.B., S.J.H., M.E., E.M. and R.J.N. provided supervision at the different sites.

Corresponding authors

Correspondence to Harry L. Anderson or Colin J. Lambert or Richard J. Nichols.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5433 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sedghi, G., García-Suárez, V., Esdaile, L. et al. Long-range electron tunnelling in oligo-porphyrin molecular wires. Nature Nanotech 6, 517–523 (2011). https://doi.org/10.1038/nnano.2011.111

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research