An extended defect in graphene as a metallic wire


Many proposed applications of graphene require the ability to tune its electronic structure at the nanoscale1,2. Although charge transfer3 and field-effect doping4 can be applied to manipulate charge carrier concentrations, using them to achieve nanoscale control remains a challenge. An alternative approach is ‘self-doping’5, in which extended defects are introduced into the graphene lattice. The controlled engineering of these defects represents a viable approach to creation and nanoscale control of one-dimensional charge distributions with widths of several atoms6. However, the only experimentally realized extended defects so far have been the edges of graphene nanoribbons7,8,9,10, which show dangling bonds that make them chemically unstable11,12,13. Here, we report the realization of a one-dimensional topological defect in graphene, containing octagonal and pentagonal sp2-hybridized carbon rings embedded in a perfect graphene sheet. By doping the surrounding graphene lattice, the defect acts as a quasi-one-dimensional metallic wire. Such wires may form building blocks for atomic-scale, all-carbon electronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structural model and schematic formation of an extended one-dimensional defect in graphene.
Figure 2: Scanning tunnelling microscopy images of graphene on Ni(111).
Figure 3: Scanning tunnelling microscopy images of extended one-dimensional defects in graphene.
Figure 4: Electronic structure of the extended one-dimensional defect.


  1. 1

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Jung, N. et al. Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9, 4133–4137 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Mater. 8, 235–242 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Girit, C. O. et al. Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Li, X. L., Wang, X. R., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Koskinen, P., Malola, S. & Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502 (2008).

    Article  Google Scholar 

  13. 13

    Koskinen, P., Malola, S. & Häkkinen, H. Evidence for graphene edges beyond zigzag and armchair. Phys. Rev. B 80, 073401 (2009).

    Article  Google Scholar 

  14. 14

    Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Lusk, M. T. & Carr, L. D. Nanoengineering defect structures on graphene. Phys. Rev. Lett. 100, 175503 (2008).

    Article  Google Scholar 

  16. 16

    Meyer, J. C. et al. direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Botello-Méndez, A. R. et al. Spin polarized conductance in hybrid graphene nanoribbons using 5–7 defects. ACS Nano 3, 3606–3612 (2009).

    Article  Google Scholar 

  18. 18

    Okada, S., Nakada, K., Kuwabara, K., Daigoku, K. & Kawai, T. Ferromagnetic spin ordering on carbon nanotubes with topological line defects. Phys. Rev. B 74, 121412 (2006).

    Article  Google Scholar 

  19. 19

    Simonis, P. et al. STM study of a grain boundary in graphite. Surf. Sci. 511, 319–322 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Gamo, Y., Nagashima, A., Wakabayashi, M., Terai, M. & Oshima, C. Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 374, 61–64 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Terrones, H. et al. New metallic allotropes of planar and tubular carbon. Phys. Rev. Lett. 84, 1716–1719 (2000).

    CAS  Article  Google Scholar 

  22. 22

    White, C. T. & Mintmire, J. Fundamental properties of single-wall carbon nanotubes. J. Phys. Chem. B 109, 52–65 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Charlier, J.-C., Blasé, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Haick, H. & Cahen, D. Making contact: connecting molecules electrically to the macroscopic world. Prog. Surf. Sci. 83, 217–261 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Nagashima, A., Tejima, N. & Oshima, C. Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems. Phys. Rev. B 50, 17487–17495 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Rosei, R. et al. Structure of graphitic carbon on Ni(111)—a surface extended-energy-loss fine-structure study. Phys. Rev. B 28, 1161–1164 (1983).

    CAS  Article  Google Scholar 

  29. 29

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Khomyakov, P. A. et al. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425 (2009).

    Article  Google Scholar 

Download references


This research was supported by the National Science Foundation (NSF) and the Office of Basic Energy Science, US Department of Energy. Calculations were performed using NSF TeraGrid facilities, USF Research Computing Cluster, and the computational facilities of Materials Simulation Laboratory at the University of South Florida (funded by ARO DURIP).

Author information




J.L. conducted and analysed the experiments. Y.L. and P.B. performed and analysed the DFT calculations. I.I.O. directed the computational studies and contributed to writing the manuscript. M.B. directed the research and wrote the manuscript. All authors edited and commented on the manuscript.

Corresponding author

Correspondence to Matthias Batzill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 467 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lahiri, J., Lin, Y., Bozkurt, P. et al. An extended defect in graphene as a metallic wire. Nature Nanotech 5, 326–329 (2010).

Download citation

Further reading