Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proposal for an all-spin logic device with built-in memory

Abstract

The possible use of spin rather than charge as a state variable in devices for processing and storing information has been widely discussed1,2, because it could allow low-power operation and might also have applications in quantum computing. However, spin-based experiments and proposals for logic applications typically use spin only as an internal variable, the terminal quantities for each individual logic gate still being charge-based3,4,5,6,7,8. This requires repeated spin-to-charge conversion, using extra hardware that offsets any possible advantage. Here we propose a spintronic device that uses spin at every stage of its operation. Input and output information are represented by the magnetization of nanomagnets that communicate through spin-coherent channels. Based on simulations with an experimentally benchmarked model, we argue that the device is both feasible and shows the five essential characteristics9,10 for logic applications: concatenability, nonlinearity, feedback elimination, gain and a complete set of Boolean operations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An all-spin logic device (ASLD) with built-in memory.
Figure 2: Modified ASLD and its switching behaviour.
Figure 3: Possible layouts for constructing cascadable gates and clocking them.

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    CAS  Article  Google Scholar 

  2. Nikonov, D. E., Bourianoff, G. I. & Gargini, P. A., Power dissipation in spintronic devices out of thermodynamic equilibrium. J. Super. Novel Magn. 19, 497–513 (2006).

    CAS  Article  Google Scholar 

  3. Xu, P. et al. An all-metallic logic gate based on current-driven domain wall motion. Nature Nanotech. 3, 97–100, (2008).

    CAS  Article  Google Scholar 

  4. Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    CAS  Article  Google Scholar 

  5. Ney, A., Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single magnetoresistive element. Nature 425, 485–487 (2003).

    CAS  Article  Google Scholar 

  6. Brataas, A., Bauer, G. E. W. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep. 427, 157–255 (2006).

    CAS  Article  Google Scholar 

  7. Leem, L. & Harris, J. S. Magnetic coupled spin-torque devices and magnetic ring oscillator. Proc. IEDM doi: 10.1109/IEDM.2008.4796640 (2008).

  8. Khitun, A. et al. Spin wave logic circuit on silicon platform. Fifth International Conference on Information Technology: New Generations 1107–1110 (2008).

  9. Waser, R. (ed.) Nanoelectronics and Information Technology Ch. III (Wiley-VCH, 2003).

    Google Scholar 

  10. Nikonov, D. E., Bourianoff, G. I. & Gargini, P. A. Simulation of highly idealized, atomic scale magnetic quantum cellular automata logic circuits. J. Nano. Opt. Dev. 3, 3–11 (2008).

    Google Scholar 

  11. Johnson, M. & Silsbee, R. H. Interfacial charge–spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    CAS  Article  Google Scholar 

  12. Jedeema, F. J., Filip, A. T. & Van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    Article  Google Scholar 

  13. Cowburn, R. P. & Welland, M. E. Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000).

    CAS  Article  Google Scholar 

  14. Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

    CAS  Article  Google Scholar 

  15. Carlton, D. B., Emley, N. C., Tuchfeld, E. & Bokor, J. Simulation of nanomagnet-based logic architecture. Nano Lett. 8, 4173–4178 (2008).

    CAS  Article  Google Scholar 

  16. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2002).

    Article  Google Scholar 

  17. Salahuddin, S . & Datta, S. Interacting systems for self correcting low power switching. Appl. Phys. Lett. 90, 093503 (2007).

    Article  Google Scholar 

  18. Behin-Aein, B., Salahuddin, S. & Datta, S. Switching energy of ferromagnetic logic bits. IEEE Trans. Nanotech. 8, 505–514 (2009).

    Article  Google Scholar 

  19. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Article  Google Scholar 

  20. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    CAS  Article  Google Scholar 

  21. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    CAS  Article  Google Scholar 

  22. Sun, J. Z. Spin–current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62, 570–578 (2000).

    CAS  Article  Google Scholar 

  23. Yang, T., Kimura, K. & Otani, Y. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nature Phys. 4, 851–854 (2008).

    CAS  Article  Google Scholar 

  24. Sun, J. Z. et al. A three-terminal spin–torque-driven magnetic switch. Appl. Phys. Lett. 95, 083506 (2009).

    Article  Google Scholar 

  25. Schmidt, G. et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    CAS  Article  Google Scholar 

  26. Rashba, E. I. Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    CAS  Article  Google Scholar 

  27. Jonker, B. T. et al. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys. 5, 817–822 (2006).

    Google Scholar 

  28. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    CAS  Article  Google Scholar 

  29. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Phys. 3, 197–202 (2007).

    CAS  Article  Google Scholar 

  30. Dash, S. P. et al. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 817–822 (2009).

    Article  Google Scholar 

  31. Jedeema, F. J. et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    CAS  Article  Google Scholar 

  32. Huang, B., Monsma, D. J. & Appelbaum, I. Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007).

    Article  Google Scholar 

  33. Jang, H. J. et al. Non-ohmic spin transport in n-type doped Si. Phys. Rev. B 78, 165329 (2008).

    Article  Google Scholar 

  34. Huang, B. & Appelbaum, I. Spin dephasing in drift-dominated semiconductor spintronics devices. Phys. Rev. B 77, 165331 (2008).

    Article  Google Scholar 

  35. Huang, B., Jang, H. J. & Appelbaum, I. Geometric dephasing-limited Hanle effect in long-distance lateral silicon spin transport devices. Appl. Phys. Lett. 93, 162508 (2008).

    Article  Google Scholar 

  36. Tombros, N. et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    CAS  Article  Google Scholar 

  37. Shiraishi, M. Spin transport in single- and multi-layer graphene. Proc. IEDM Session 10.5 (2009).

  38. Bennett, C. H. The thermodynamics of computation — a review. Int. J. Theor. Phys. 21, 905–940 (1982).

    CAS  Article  Google Scholar 

  39. Likharev, K. K. & Korotkov, A. N. Single-electron parametron: reversible computation in a discrete-state system. Science 273, 763–765 (1996).

    CAS  Article  Google Scholar 

  40. Kummamuru, R. K. et al. Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans. Electron. Dev. 50, 1906–1913 (2003).

    CAS  Article  Google Scholar 

  41. Mangin, S. et al. Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. App. Phys. Lett. 94, 012502 (2009).

    Article  Google Scholar 

  42. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Reduction of the spin–torque critical current by partially canceling the free layer demagnetization field. Appl. Phys. Lett. 94, 122508 (2009).

    Article  Google Scholar 

  43. Wakerly, J. F. Digital Design: Principles and Applications (Prentice Hall, 2005).

    Google Scholar 

  44. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    CAS  Article  Google Scholar 

  45. Sun, J. Z. & Ralph, D. C. Magnetoresistance and spin-transfer torque in magnetic tunnel junctions. J. Magn. Magn. Mater. 320, 1227–1237 (2008).

    CAS  Article  Google Scholar 

  46. Lee, O. J. et al. Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin current pulse. Appl. Phys. Lett. 95, 012506 (2009).

    Article  Google Scholar 

  47. Gallagher, W. J. & Parkin, S. S. P. Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16–Mb MRAM demonstrator chip. IBM J. Res. Dev. 50, 5–23 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to give thanks to M. Lundstrom for input throughout the course of this work. B.B. is grateful to Abu-Naser Zainuddin for joint development of the model for the stochastic LLG equation. B.B. would also like to thank his colleagues K. Camsari, X. Fong, C. Augustine and L. Siddiqui for scientific interactions and discussions. This work also benefited from discussions with D. Nikonov, G. Bourianoff, J. Bokor and A. Seabaugh. This work was supported by the Nanoelectronics Research Initiative (NRI).

Author information

Authors and Affiliations

Authors

Contributions

B.B. wrote the paper and performed the simulations. D.D. performed the necessary calculations to include the experimental data point of Fig. S3a of the Supplementary Information in our model, and helped with the figures. S.S. helped with the design of the structure and commented on the figures. S.D. helped with writing the paper, helped with the design of the structure, analysed the data, and helped with identifying the necessary theoretical approach. All authors helped with the theoretical understanding, discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Behtash Behin-Aein or Supriyo Datta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1251 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Behin-Aein, B., Datta, D., Salahuddin, S. et al. Proposal for an all-spin logic device with built-in memory. Nature Nanotech 5, 266–270 (2010). https://doi.org/10.1038/nnano.2010.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.31

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research