Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes


An emerging concept in cell signalling is the natural role of reactive oxygen species such as hydrogen peroxide (H2O2) as beneficial messengers in redox signalling pathways. The nature of H2O2 signalling is confounded, however, by difficulties in tracking it in living systems, both spatially and temporally, at low concentrations. Here, we develop an array of fluorescent single-walled carbon nanotubes that can selectively record, in real time, the discrete, stochastic quenching events that occur as H2O2 molecules are emitted from individual human epidermal carcinoma cells stimulated by epidermal growth factor. We show mathematically that such arrays can distinguish between molecules originating locally on the cell membrane from other contributions. We find that epidermal growth factor induces 2 nmol H2O2 locally over a period of 50 min. This platform promises a new approach to understanding the signalling of reactive oxygen species at the cellular level.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Nanotube sensing platform.
Figure 2: Spatial mapping of quenching transitions over single A431 cells.
Figure 3: SWNT quenching depends of EGFR density.
Figure 4: Quantitative analysis of results from SWNT sensor array.


  1. 1

    Imlay, J. A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755–776 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Veal, E. A., Day, A. M. & Morgan, B. A. Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods 3, 281–286 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Casanova, D. et al. Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells. Nature Nanotech. 4, 581–585 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Lee, D. et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nature Mater. 6, 765–769 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Miller, E. W., Tulyanthan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nature Chem. Biol. 3, 263–267 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Zhou, M., Diwu, Z., Panchuk-Voloshina, N. & Haugland, R. P. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal. Biochem. 253, 162–168 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Hong, Y., Blackman, N. M. K., Kopp, N. D., Sen, A. & Velegol, D. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99, 178103 (2007).

  9. 9

    Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Jin, H., Heller, D. A., Kim, J.-H. & Strano, M. S. Stochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors. Nano Lett. 8, 4299–4304 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Heller, D. A. et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nature Nanotech. 4, 114–120 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Herbst, R. S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 59, 21–26 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Lax, I. et al. Functional-analysis of the ligand-binding site of EGF-receptor utilizing chimeric chicken human receptor molecules. EMBO J. 8, 421–427 (1989).

    CAS  Article  Google Scholar 

  15. 15

    Masui, H., Castro, L. & Mendelsohn, J. Consumption of EGF by A431 cells—evidence for receptor recycling. J. Cell Biol. 120, 85–93 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Carpenter, G. & Cohen, S. Epidermal growth-factor. Annu. Rev. Biochem. 48, 193–216 (1979).

    CAS  Article  Google Scholar 

  17. 17

    Bae, Y. S. et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide—role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Foote, C. S. Free Radicals in Biology (Pryor, W. A., ed.) 85–133 (Academic, 1976).

    Google Scholar 

  19. 19

    Ziyatdinova, G. K., Gil'metdinova, D. M. & Budnikov, G. K. Reactions of superoxide anion radical with antioxidants and their use in voltammetry. J. Anal. Chem. 60, 49–52 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Kim, J.-H. et al. The rational design of nitric oxide selectivity in single-walled carbon nanotube near infrared fluorescence sensors for biological detection. Nature Chem. 1, 473–481 (2009).

    CAS  Article  Google Scholar 

  21. 21

    DeYulia, G. J., Carcamo, J. M., Borquez-Ojeda, O., Shelton, C. C. & Golde, D. W. Hydrogen peroxide generated extracellularly by receptor–ligand interaction facilitates cell signaling. Proc. Natl Acad. Sci. USA 102, 5044–5049 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Morazzani, M. et al. Monolayer versus aggregate balance in survival process for EGF-induced apoptosis in A431 carcinoma cells: implication of ROS-P38 mapk-integrin A2B1 pathway. Int. J. Cancer 110, 788–799 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Park, H. S. et al. Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2 . Mol. Cell. Biol. 24, 4384–4394 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Ramey, N. A., Park, C. Y., Gehlbach, P. L. & Chuck, R. S. Imaging mitochondria in living corneal endothelial cells using autofluorescence microscopy. Photochem. Photobiol. 83, 1325–1329 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Welsher, K., Liu, Z., Daranciang, D. & Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8, 586–590 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Nieva, J. & Wentworth, P. The antibody-catalyzed water oxidation pathway—a new chemical arm to immune defense? Trends Biochem. Sci. 29, 274–278 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Carpenter, G. The EGF Receptor Family: Biologic Mechanisms and Role in Cancer 33–60 (Academic Press, 2003).

    Google Scholar 

  28. 28

    Harbour, J. R. & Issler, S. L. Involvement of the azide radical in the quenching of singlet oxygen by azide anion in water. J. Am. Chem. Soc. 104, 903–905 (1982).

    CAS  Article  Google Scholar 

  29. 29

    Kuimova, M. K., Yahioglu, G. & Ogilby, P. R. Singlet oxygen in a cell: spatially dependent lifetimes and quenching rate constants. J. Am. Chem. Soc. 131, 332–340 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Juarez, J. C. et al. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl Acad. Sci. USA 105, 7147–7152 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Yang, J. L., Wang, L. C., Chang, C. Y. & Liu, T. Y. Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ. Mol. Mutagen. 33, 194–201 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Fridovich, I. Biology of oxygen radicals. Science 201, 875–880 (1978).

    CAS  Article  Google Scholar 

  33. 33

    Imlay, J. A., Chin, S. M. & Linn, S. Toxic DNA damage by hydrogen peroxide through the fenton reaction in vivo and in vitro. Science 240, 640–642 (1988).

    CAS  Article  Google Scholar 

  34. 34

    Halliwell, B. & Aruoma, O. I. DNA damage by oxygen-derived species—its mechanism and measurement in mammalian systems. FEBS Lett. 281, 9–19 (1991).

    CAS  Article  Google Scholar 

  35. 35

    Khan, A. U. & Kasha, M. Singlet molecular-oxygen in the Haber–Weiss reaction. Proc. Natl Acad. Sci. USA 91, 12365–12367 (1994).

    CAS  Article  Google Scholar 

  36. 36

    Hatz, S., Lambert, J. D. C. & Ogilby, P. R. Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability. Photochem. Photobiol. Sci. 6, 1106–1116 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Hardwick, T. J. The rate constant of the reaction between ferrous ions and hydrogen peroxide in acid solution. Canadian J. Chem. 35, 428–436 (1957).

    CAS  Article  Google Scholar 

  38. 38

    Wentworth, P. et al. Antibody catalysis of the oxidation of water. Science 293, 1806–1811 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Wentworth, A. D., Jones, L. H., Wentworth, P., Janda, K. D. & Lerner, R. A. Antibodies have the intrinsic capacity to destroy antigens. Proc. Natl Acad. Sci. USA 97, 10930–10935 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Imlay, J. A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418 (2003).

    CAS  Article  Google Scholar 

  41. 41

    Zanthoff, H. & Baerns, M. Oxidative coupling of methane in the gas phase. Kinetic simulation and experimental verification. Ind. Eng. Chem. Res. 29, 2–10 (2002).

    Article  Google Scholar 

  42. 42

    Zhu, J. Y., Dittmeyer, R. & Hofmann, H. Application of sensitivity analysis to the reduction of a complex kinetic model for the homogeneous oxidative coupling of methane. Chem. Eng. Proc. 32, 167–176 (1993).

    CAS  Article  Google Scholar 

  43. 43

    Mizukawa, H. & Okabe, E. Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery. Br. J. Pharmacol. 121, 63–70 (1997).

    CAS  Article  Google Scholar 

Download references


M.S.S is grateful for a Beckman Young Investigator Award and a National Science Foundation (NSF) Career Award. This work was funded under the NSF Nanoscale Interdisciplinary Research Team on single-molecule detection in living cells using carbon nanotube optical probes. Part of this work was supported by the national grants Ministry of Education of the Czech Republic project no. MSM0021620806 and KAN grant no. 400100701. The authors thank S. Tannenbaum, G.Wogan and L. Trudel and acknowledge a seed grant from the Center for Environmental Health Sciences at MIT. We also thank M. Balastik at Harvard Medical School for assistance with the confocal experiments, K.D. Wittrup, G. Stephanopoulos, J.-H. Ahn, J.-H Han at Chemical Engineering at MIT, S. Sheffield, Mathematics Department, MIT, and Y. Li at University of Illinois Urbana Champaign for helpful discussions.

Author information




H.J. and M.S. conceived the experiments, derived the models and wrote the manuscript. H.J. performed the experiments and analysed the data. D.H., M.K., J.-H.K., J.Z. and A.B. all assisted in the experiments. H.J. and M.S. co-wrote the paper with input from N.M.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5302 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, H., Heller, D., Kalbacova, M. et al. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nature Nanotech 5, 302–309 (2010).

Download citation

Further reading