Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electroluminescence from a single nanotube–molecule–nanotube junction


The positioning of single molecules between nanoscale electrodes1,2,3,4,5,6,7,8 has allowed their use as functional units in electronic devices. Although the electrical transport in such devices has been widely explored, optical measurements have been restricted to the observation of electroluminescence from nanocrystals and nanoclusters9,10 and from molecules in a scanning tunnelling microscope setup11,12. In this Letter, we report the observation of electroluminescence from the core of a rod-like molecule between two metallic single-walled carbon nanotube electrodes forming a rigid solid-state device. We also develop a simple model to explain the onset voltage for electroluminescence. These results suggest new characterization and functional possibilities, and demonstrate the potential of carbon nanotubes for use in molecular electronics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Chemical structure of the molecule and formation of the NT–M–NT device.
Figure 2: Image of a nanogap and the parameters controlling its dimensions and transport characteristics.
Figure 3: Energy-level model, PL and EL spectra, and light emission from a biased NT–M–NT junction.


  1. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    CAS  Article  Google Scholar 

  2. Datta, S. et al. Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530–2533 (1997).

    CAS  Article  Google Scholar 

  3. Reichert, J. et al. Driving current through single organic molecules. Phys. Rev. Lett. 88, 176804 (2002).

    CAS  Article  Google Scholar 

  4. de Picciotto, A. et al. Prevalence of Coulomb blockade in electro-migrated junctions with conjugated and non-conjugated molecules. Nanotechnology 16, 3110–3114 (2005).

    CAS  Article  Google Scholar 

  5. Song, H. et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).

    CAS  Article  Google Scholar 

  6. Qi, P. et al. Miniature organic transistors with carbon nanotubes as quasi one-dimensional electrodes. J. Am. Chem. Soc. 126, 11774–11775 (2004).

    CAS  Article  Google Scholar 

  7. Guo, X. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    CAS  Article  Google Scholar 

  8. Feldmann, A. K., Steigerwald, M. L., Guo, X. & Nuckolls, C. Molecular electronic devices based on single-walled carbon nanotube electrodes. Acc. Chem. Res. 41, 1731–1741 (2008).

    Article  Google Scholar 

  9. Gonzalez, J. I., Lee, T.-H., Barnes, M. D., Antoku, Y. & Dickson, R. M. Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature. Phys. Rev. Lett. 93, 147402 (2004).

    Article  Google Scholar 

  10. Gudiksen, M. S., Maher, K. N., Ouyang, L. & Park, H. Electroluminesence from a single-nanocrystal transistor. Nano Lett. 5, 2257–2261 (2005).

    CAS  Article  Google Scholar 

  11. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    CAS  Article  Google Scholar 

  12. Dong, Z. et al. Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys. Rev. Lett. 92, 086801 (2004).

    Article  Google Scholar 

  13. Buker, J. & Kirczenow, G. Theoretical study of photon emission from molecular wires. Phys. Rev. B 66, 2453061 (2002).

    Article  Google Scholar 

  14. Grunder, S. et al. Synthesis and optical properties of molecular rods comprising a central core-substituted naphthalenediimide chromophore for carbon nanotube junctions. Eur. J. Org. Chem. doi: 10.1002/ejoc.201001415 (accepted).

  15. Błaszczyk, A., Fischer, M., von Hänisch, C. & Mayor, M. Synthesis, structure, and optical properties of terminally sulfur-functionalized core-substituted naphthalene–bisimide dyes. Helv. Chim. Acta 89, 1986–2005 (2006).

    Article  Google Scholar 

  16. Jin, C., Suenaga, K. & Iijima, S. Plumbing carbon nanotubes. Nature Nanotech. 3, 17–21 (2008).

    CAS  Article  Google Scholar 

  17. Essig, S. et al. Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. Nano Lett. 10, 1589–1594 (2010).

    CAS  Article  Google Scholar 

  18. Lamouche, G., Lavallard, P. & Gacoin, T. Optical properties of dye molecules as a function of the surrounding dielectric medium, Phys. Rev. A 59, 4668–4674 (1999).

    CAS  Article  Google Scholar 

  19. Valeur, B., Molecular Fluorescence 113–124 (Wiley-VCH, 2001).

    Book  Google Scholar 

  20. Sakai, N., Mareda, J., Vauthey, E. & Matile, S. Core-substituted naphthalenediimides. Chem. Commun. 46, 4225–4237 (2010).

    CAS  Article  Google Scholar 

  21. Sonogashira, K. Metal-Catalyzed Cross-Coupling Reactions 203–229 (Wiley-VCH, 1998).

    Google Scholar 

  22. Vijayaraghavan, A. et al. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 7, 1556–1560 (2007).

    CAS  Article  Google Scholar 

  23. Lebedkin, S. et al. Single-walled carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon 40, 417–423.

    CAS  Article  Google Scholar 

  24. Moshammer, K., Hennrich, F. & Kappes, M. M. Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2, 599–606 (2009).

    CAS  Article  Google Scholar 

  25. Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech. 3, 387–394 (2008).

    CAS  Article  Google Scholar 

  26. Marquardt, C. W. Reversible metal–insulator transitions in metallic single-walled carbon nanotubes. Nano Lett. 8, 2767–2772 (2008).

    CAS  Article  Google Scholar 

  27. Collins, P. G., Hersam, M., Arnold, M., Martel, R. & Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86, 3128–3131 (2001).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge helpful discussions with E. Dormann, M. Hettler and F. Evers, technical support by M. Fischer, and the help of C. Grupe with the graphics of the NT–M–NT junction. The ongoing support of the Karlsruhe Institute of Technology and of the University of Basel is gratefully acknowledged. The research was funded by the Initiative and Networking Fund of the Helmholtz-Gemeinschaft Deutscher Forschungszentren (VH-NG-126), an equipment grant from Agilent Technologies, the NCCR Nanoscience and the Swiss National Science Foundation.

Author information

Authors and Affiliations



M.M. and R.K. conceived and designed the experiments. S.G. and A.B. synthesized the molecules. F.H. synthesized the nanotube dispersion. S.D. prepared the electrode array and C.M. performed device assembly and measurements. M.M., R.K., C.M. and H.v.L. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Marcel Mayor or Ralph Krupke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1434 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marquardt, C., Grunder, S., Błaszczyk, A. et al. Electroluminescence from a single nanotube–molecule–nanotube junction. Nature Nanotech 5, 863–867 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research