Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Folding and cutting DNA into reconfigurable topological nanostructures


Topology is the mathematical study of the spatial properties that are preserved through the deformation, twisting and stretching of objects. Topological architectures are common in nature and can be seen, for example, in DNA molecules that condense and relax during cellular events1. Synthetic topological nanostructures, such as catenanes and rotaxanes, have been engineered using supramolecular chemistry, but the fabrication of complex and reconfigurable structures remains challenging2. Here, we show that DNA origami3 can be used to assemble a Möbius strip, a topological ribbon-like structure that has only one side4,5,6. In addition, we show that the DNA Möbius strip can be reconfigured through strand displacement7 to create topological objects such as supercoiled ring and catenane structures. This DNA fold-and-cut strategy, analogous to Japanese kirigami8, may be used to create and reconfigure programmable topological structures that are unprecedented in molecular engineering.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a Möbius DNA strip.
Figure 2: Visualization of the Möbius DNA strips with AFM and TEM imaging.
Figure 3: DNA kirigami to achieve reconfigurable topologies from the Möbius strip.


  1. Bates, A. D. & Maxwell, A. DNA Topology 2nd edn (Oxford Univ. Press, 2005).

  2. Sauvage, J. P. & Dietrich-Buchecker, C. (eds) Molecular Catenane, Rotaxanes and Knots: A Journey through the World of Molecular Topology (Wiley-VCH, 1999).

  3. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  4. Starostin, E. L. & Van Der Heijden, G. H. M. The shape of a Möbius strip. Nature Mater. 6, 563–567 (2007).

    Article  CAS  Google Scholar 

  5. Yoon, Z. S., Osuka, A. & Kim, D. Möbius aromaticity and antiaromaticity in expanded porphyrins. Nature Chem. 1, 113–122 (2009).

    Article  CAS  Google Scholar 

  6. Lukin, O. & Vögtle, F. Knotting and threading of molecules: chemistry and chirality of molecular knots and their assemblies. Angew. Chem. Int. Ed. 44, 1456–1477 (2005).

    Article  CAS  Google Scholar 

  7. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  8. Rutzky, J. Kirigami: Exquisite Projects to Fold and Cut (Metro Books, 2007).

  9. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  10. Aldaye, F. A., Palmer, A. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  11. Lin, C., Liu, Y. & Yan, H. Designer DNA nanoarchitectures. Biochemistry 48, 1663–1674 (2009).

    Article  CAS  Google Scholar 

  12. Chen, J. & Seeman, N. C. The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  CAS  Google Scholar 

  13. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  14. Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  Google Scholar 

  15. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–U141 (2008).

    Article  CAS  Google Scholar 

  16. Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    Article  CAS  Google Scholar 

  17. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  Google Scholar 

  18. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  19. Ke, Y. et al. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 9, 2445–2447 (2009).

    Article  CAS  Google Scholar 

  20. Kuzuya, A. & Komiyama, M. Design and construction of a box-shaped 3D-DNA origami. Chem. Commun. 4182–4184 (2009).

  21. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  22. Ke, Y., Lindsay, S., Chang, Y., Liu, Y. & Yan, H. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008).

    Article  CAS  Google Scholar 

  23. Rinker, S., Ke, Y., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nature Nanotech. 3, 418–422 (2008).

    Article  CAS  Google Scholar 

  24. Voigt, N. V. et al. Single-molecule chemical reactions on DNA origami. Nature Nanotech. 5, 200–203 (2010).

    Article  CAS  Google Scholar 

  25. Ding, B. et al. Gold nanoparticles' self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 132, 3248–3249 (2010).

    Article  CAS  Google Scholar 

  26. Pal, S., Deng, Z., Ding, B., Yan, H. & Liu, Y. DNA origami directed self-assembly of discrete silver nanoparticle architectures. Angew. Chem. Int. Ed. 49, 2700–2704 (2010).

    Article  CAS  Google Scholar 

  27. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    Article  CAS  Google Scholar 

  28. Faiz, J. A., Heitz, V. & Sauvage, J.-P. Design and synthesis of porphyrin-containing catenanes and rotaxanes. Chem. Soc. Rev. 38, 422–442 (2009).

    Article  CAS  Google Scholar 

  29. Du, S. M., Stollar, B. D. & Seeman, N. C. A synthetic DNA molecule in three knotted topologies. J. Am. Chem. Soc. 117, 1194–1200 (1995).

    Article  CAS  Google Scholar 

  30. Mao, C., Sun, W. & Seeman, N. C. Construction of Borromean rings from DNA. Nature 386, 137–138 (1997).

    Article  CAS  Google Scholar 

  31. Ackermann, D. et al. A double stranded DNA rotaxane. Nature Nanotech. 5, 436–442 (2010).

    Article  CAS  Google Scholar 

  32. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge financial support from the Office of Naval Research, Army Research Office, National Science Foundation, National Institute of Health and Department of Energy to H.Y. and Y.L., and the Alfred P. Sloan Fellowship to H.Y. Y.L. and H.Y. were also supported as part of the Center for Bio-Inspired Solar Fuel Production, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001016. The authors acknowledge use of the EM facility in the School of Life Sciences at Arizona State University. The authors also thank C. Flores for help in proofreading the manuscript.

Author information

Authors and Affiliations



H.Y. and D.H. conceived and designed the experiment. D.H., S.P. and Y.L. performed the experiments. D.H., Y.L., S.P. and H.Y. analysed the data. All authors discussed the results. H.Y., Y.L. and D.H. wrote the manuscript.

Corresponding authors

Correspondence to Yan Liu or Hao Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 24194 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Han, D., Pal, S., Liu, Y. et al. Folding and cutting DNA into reconfigurable topological nanostructures. Nature Nanotech 5, 712–717 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research