Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Performance of monolayer graphene nanomechanical resonators with electrical readout

Abstract

The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical applications. Here, we demonstrate the fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the megahertz range, and the strong dependence of resonant frequency on applied gate voltage can be fitted to a membrane model to yield the mass density and built-in strain of the graphene. Following the removal and addition of mass, changes in both density and strain are observed, indicating that adsorbates impart tension to the graphene. On cooling, the frequency increases, and the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching 1 × 104 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, the groundwork for applications of these devices, including high-sensitivity mass detectors, is put in place.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Device and experimental setup.
Figure 2: NEMS properties of graphene resonators.
Figure 3: Modelling of device behaviour.
Figure 4: Removal of mass by ohmic heating.
Figure 5: Effects of mass loading.
Figure 6: Temperature dependence.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).

    Article  CAS  Google Scholar 

  3. Mohanty, N. & Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008).

    Article  CAS  Google Scholar 

  4. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008).

    Article  CAS  Google Scholar 

  5. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  6. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).

    Article  CAS  Google Scholar 

  7. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  CAS  Google Scholar 

  8. Yang, Y. T. et al. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    Article  CAS  Google Scholar 

  9. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  CAS  Google Scholar 

  10. Garcia-Sanchez, D. et al. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8, 1399–1403 (2008).

    Article  CAS  Google Scholar 

  11. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  CAS  Google Scholar 

  12. Stolyarova, E. et al. Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett. 9, 332–337 (2009).

    Article  CAS  Google Scholar 

  13. Witkamp, B., Poot, M. & van der Zant, H. S. J. Bending-mode vibration of a suspended nanotube resonator. Nano Lett. 6, 2904–2908 (2006).

    Article  CAS  Google Scholar 

  14. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  15. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    Article  CAS  Google Scholar 

  16. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  Google Scholar 

  17. Lassagne, B., Garcia-Sanchez, D., Aguasca, A. & Bachtold, A. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 8, 3735–3738 (2008).

    Article  CAS  Google Scholar 

  18. Atalaya, J., Isacsson, A. & Kinaret, J. M. Continuum elastic modeling of graphene resonators. Nano Lett. 8, 4196–4200 (2008).

    Article  CAS  Google Scholar 

  19. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    Article  CAS  Google Scholar 

  20. Yakobson, B. I., Brabec, C. J. & Bernholc, J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996).

    Article  CAS  Google Scholar 

  21. Moser, J., Barreiro, A. & Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007).

    Article  Google Scholar 

  22. Ishigami, M. et al. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    Article  CAS  Google Scholar 

  23. Postma, H. W. C., Kozinsky, I., Husain, A. & Roukes, M. L. Dynamic range of nanotube- and nanowire-based electromechanical systems. Appl. Phys. Lett. 86, 223105 (2005).

    Article  Google Scholar 

  24. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  25. Jun, S. C. et al. Electrothermal tuning of Al-SiC nanomechanical resonators. Nanotechnology 17, 1506–1511 (2006).

    Article  CAS  Google Scholar 

  26. Bargatin, I., Kozinsky, I. & Roukes, M. L. Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators. Appl. Phys. Lett. 90, 093116 (2007).

    Article  Google Scholar 

  27. Suleimanov, R. A. & Abdullaev, N. A. The nature of negative linear expansion of graphite crystals. Carbon 31, 1011–1013 (1993).

    Article  CAS  Google Scholar 

  28. Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite and derivatives. Phys. Rev. B 71, 205214 (2005).

    Article  Google Scholar 

  29. Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotech. 4, 562–566 (2009).

    Article  CAS  Google Scholar 

  30. Huttel, A. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).

    Article  CAS  Google Scholar 

  31. Hutchinson, A. B. et al. Dissipation in nanocrystalline-diamond nanomechanical resonators. Appl. Phys. Lett. 84, 972–974 (2004).

    Article  CAS  Google Scholar 

  32. Mohanty, P. et al. Intrinsic dissipation in high-frequency micromechanical resonators. Phys. Rev. B 66, 085416 (2002).

    Article  Google Scholar 

  33. Evoy, S. et al. Temperature-dependent internal friction in silicon nanoelectromechanical systems. Appl. Phys. Lett. 77, 2397–2399 (2000).

    Article  CAS  Google Scholar 

  34. Chiu, H. Y., Hung, P., Postma, H. W. C. & Bockrath, M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 8, 4342–4346 (2008).

    Article  CAS  Google Scholar 

  35. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 3, 533–537 (2008).

    Article  CAS  Google Scholar 

  36. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article  Google Scholar 

  37. Huang, M. Y. et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 7304–7308 (2009).

    Article  CAS  Google Scholar 

  38. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  39. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  40. Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Huang for useful discussions, H. Yan for Raman spectroscopy and V. Lee for evaporator setup. This work is supported by the DARPA Center on Nanoscale Science and Technology for Integrated Micro/Nano-Electromechanical Transducers (iMINT, grant no. HR0011-06-1-0048, D.L. Polla, Program Manager), the National Science Foundation (grant no. CHE-0117752), the W. M. Keck Foundation and Microsoft Project Q.

Author information

Authors and Affiliations

Authors

Contributions

C.C., S.R. and J.H. designed the experiment. C.C. and W.K. carried out fabrication, S.R. and C.C. performed the experiments and analysed data, and K.B. assisted with the fabrication, measurement and data analysis. I.K. provided assistance with mass sensing. C.C., S.R. and J.H. co-wrote the paper. P.K., H.L.S. and T.F.H. provided materials and equipment. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to James Hone.

Supplementary information

Supplementary information

Supplementary information (PDF 1252 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, C., Rosenblatt, S., Bolotin, K. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotech 4, 861–867 (2009). https://doi.org/10.1038/nnano.2009.267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.267

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research