Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalyst preparation for CMOS-compatible silicon nanowire synthesis

Abstract

Metallic contamination was key to the discovery of semiconductor nanowires1, but today it stands in the way of their adoption by the semiconductor industry. This is because many of the metallic catalysts required for nanowire growth are not compatible with standard CMOS (complementary metal oxide semiconductor) fabrication processes. Nanowire synthesis with those metals that are CMOS compatible, such as aluminium2 and copper3,4,5, necessitate temperatures higher than 450 °C, which is the maximum temperature allowed in CMOS processing. Here, we demonstrate that the synthesis temperature of silicon nanowires using copper-based catalysts is limited by catalyst preparation. We show that the appropriate catalyst can be produced by chemical means at temperatures as low as 400 °C. This is achieved by oxidizing the catalyst precursor, contradicting the accepted wisdom that oxygen prevents metal-catalysed nanowire growth. By simultaneously solving material compatibility and temperature issues, this catalyst synthesis could represent an important step towards real-world applications of semiconductor nanowires6,7,8,9,10,11.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Silicon nanowire yield at T = 400 °C with oxide-free and oxidized copper seed layer.
Figure 2: Structural and chemical characterization of nanowires.
Figure 3: Oxidation at the tip of the nanowire in an ambient atmosphere.

References

  1. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  2. Wang, Y., Schmidt, V., Senz, S. & Goesele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nature Nanotech. 1, 186–189 (2006).

    Article  CAS  Google Scholar 

  3. Yao, Y. & Fan, S. Si nanowires synthesized with Cu catalyst. Mater. Lett. 61, 177–181 (2007).

    Article  CAS  Google Scholar 

  4. Arbiol, J., Kalache, B., Cabarrocas, P. R. I., Morante, J. R. & Morral, A. F. I. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism. Nanotechnology 18, 305606 (2007).

    Article  Google Scholar 

  5. Kalache, B., Cabarrocas, P. R. & Morral, A. F. Observation of incubation times in the nucleation of silicon nanowires obtained by the vapor–liquid–solid method. Jpn J. Appl. Phys. 45, L190 (2006).

    Article  CAS  Google Scholar 

  6. Lu, W. & Lieber, C. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    Article  CAS  Google Scholar 

  7. Patolsky, F., Timko, B. P., Zheng, G. & Lieber, C. M. Nanowire-based nanoelectronic devices in the life sciences. MRS Bull. 32, 142–149 (2007).

    Article  CAS  Google Scholar 

  8. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. D. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  9. Wang, Z. L. & Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    Article  CAS  Google Scholar 

  10. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2007).

    Article  Google Scholar 

  11. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  CAS  Google Scholar 

  12. Kamins, T. I., Stanley Williams, R., Basile, D. P., Hesjedal, T. & Harris, J. S. Ti-catalyzed Si nanowires by chemical vapor deposition: microscopy and growth mechanisms. J. Appl. Phys. 89, 1008–1016 (2001).

    Article  CAS  Google Scholar 

  13. Lensch-Falk, J. L., Hemesath, E. R., Perea, D. E. & Lauhon, L. J. Alternative catalysts for VSS growth of silicon and germanium nanowires. J. Mater. Chem. 19, 849–857 (2009).

    Article  CAS  Google Scholar 

  14. Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S. & Lee, S. T. Nucleation and growth of Si nanowires from silicon oxide. Phys. Rev. B 58, R16024–R16026 (1998).

    Article  CAS  Google Scholar 

  15. Morral, A. F., Arbiol, J., Prades, J. D., Cirera, A. & Morante, J. R. Synthesis of silicon nanowires with wurtzite crystalline structure by using standard chemical vapor deposition. Adv. Mater. 19, 1347–1351 (2007).

    Article  Google Scholar 

  16. Prades, J. D., Arbiol, J., Cirera, A., Morante, J. R. & Morral, A. F. Concerning the 506 cm−1 band in the Raman spectrum of silicon nanowires. Appl. Phys. Lett. 91, 123107 (2007).

    Article  Google Scholar 

  17. Wentorf, R. H. & Kasper, J. S. Two new forms of silicon. Science 139, 338–339 (1963).

    Article  CAS  Google Scholar 

  18. Yeh, C. Y., Lu, Z. W., Froyen, S. & Zunger, A. Zinc-blende–wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992).

    Article  CAS  Google Scholar 

  19. Bell, D. C. et al. Imaging and analysis of nanowires. Microsc. Res. Tech. 64, 373–389 (2004).

    Article  Google Scholar 

  20. Zhao, X. S., Ge, Y. R., Schroeder, J. & Persans, P. D. Carrier-induced strain effect in Si and GaAs nanocrystals. Appl. Phys. Lett. 65, 2033–2035 (2004).

    Article  Google Scholar 

  21. Cabrera, N. & Mott, N. F. Theory of the oxidation of metals. Rep. Prog. Phys. 12, 163–184 (1948).

    Article  Google Scholar 

  22. Gong, Y. S., Chiapyng Lee & Yang, C. K. Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films. J. Appl. Phys. 77, 5422–5425 (1995).

    Article  CAS  Google Scholar 

  23. Lampimäki, M., Lahtonen, K., Hirsimäki, M. & Valden, M. Nanoscale oxidation of Cu (100): oxide morphology and surface reactivity. J. Chem. Phys. 126, 034703 (2007).

    Article  Google Scholar 

  24. Jiang, X. C., Herricks, T. & Xia, Y. N. CuO nanowires can be synthesized by heating copper substrates in air. Nano. Lett. 2, 1333–1338 (2002).

    Article  CAS  Google Scholar 

  25. Delogu, F. Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: molecular dynamics simulations. Phys. Rev. B 72, 205418 (2005).

    Article  Google Scholar 

  26. Chromik, R. R., Neils, W. K. & Cotts E. J. Thermodynamic and kinetic study of solid state reactions in the Cu–Si system. J. Appl. Phys. 86, 4273–4281 (1999).

    Article  CAS  Google Scholar 

  27. Harper, J. N. E., Charai, A., Stolt, L., d'Heurle, F. M. & Fryer. P. M. Room-temperature oxidation of silicon catalysed by Cu3Si. Appl. Phys. Lett. 56, 2519–2521 (1990).

    Article  CAS  Google Scholar 

  28. Baklanov, M. R. et al. Characterization of Cu surface cleaning by hydrogen plasma. J. Vac. Sci. Technol. B 19, 1201–1211 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Research Agency (ANR) through Carnot Funding. We thank D. Lafond and B. Florin for assistance during electron microscopy measurements. We thank C. Charrier and her team for clean room technical assistance. We thank K. Haxaire for diffusion-barrier and metal deposition.

Author information

Authors and Affiliations

Authors

Contributions

V.R. and V.J. designed the experiments. V.R. synthesized the nanowires and performed SEM observations. M.J. performed TEM measurements, P.C. tomography experiments, D.R. Raman measurements and P.G. XRD measurements. All the authors analysed the data. V.R. and M.J. co-wrote the paper.

Corresponding author

Correspondence to Vincent Jousseaume.

Supplementary information

Supplementary information

Supplementary information (PDF 661 kb)

Supplementary information

Supplementary information (WMV 3989 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Renard, V., Jublot, M., Gergaud, P. et al. Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nature Nanotech 4, 654–657 (2009). https://doi.org/10.1038/nnano.2009.234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.234

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research