Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular electronics with single molecules in solid-state devices

Abstract

The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: energy levels for a molecule in a metal nanogap.
Figure 2: Molecules that have been used in electron transport measurements and the length dependence of various properties of OPV molecules.

References

  1. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  2. Reed, M. A., Zhou, C., Muller, C. J., Burgin, P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  3. Bumm, L. A. et al. Are single molecular wires conducting? Science 271, 1705–1707 (1996).

    Article  CAS  Google Scholar 

  4. Joachim, C., Gimzewski, J. K., Schlittler, R. R. & Chavy, C. Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995).

    Article  CAS  Google Scholar 

  5. Galperin, M., Ratner, M. A., Nitzan, A. & Troisi, A. Nuclear coupling and polarization in molecular transport junctions: beyond tunneling to function. Science 319, 1056–1060 (2008).

    Article  CAS  Google Scholar 

  6. Martin, C. A., Ding, D., van der Zant, H. S. J. & van Ruitenbeek, J. M. Lithographic mechanical break junctions for single-molecule measurements in vacuum: possibilities and limitations. New J. Phys. 10, 065008 (2008).

    Article  Google Scholar 

  7. Chen, F., Hihath, J., Huang, Z., Li, X. & Tao, N. J. Measurement of single molecule conductance. Annu. Rev. Phys. Chem. 58, 535–564 (2007).

    Article  CAS  Google Scholar 

  8. Martin, C. A. et al. Fullerene based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

    Article  CAS  Google Scholar 

  9. Ruben, M. et. al. Charge transport through a Cardan-joint molecule. Small 4, 2229–2235 (2008).

    Article  CAS  Google Scholar 

  10. Tao, N. J. Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys. Rev. Lett. 76, 4066–4069 (1996).

    Article  CAS  Google Scholar 

  11. Zhang, J. et al. Single-molecule electron transfer in electrochemical environments. Chem. Rev. 108, 2737–2791 (2008).

    Article  CAS  Google Scholar 

  12. Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    Article  CAS  Google Scholar 

  13. Danilov, A. V., Kubatkin, S. E., Kafanov, S. G., Flensberg, K. & Bjørnholm, T. Electron transfer dynamics of bistable single-molecule junctions. Nano Lett. 6, 2184–2190 (2006).

    Article  CAS  Google Scholar 

  14. Osorio, E. A. et al. Electronic excitations of a single molecule contacted in a three-terminal configuration. Nano Lett. 7, 3336–3342 (2007).

    Article  CAS  Google Scholar 

  15. Danilov, A. V. et al. Electronic transport in single molecule junctions: Control of the molecule–electrode coupling through intramolecular tunneling barriers. Nano Lett. 8, 1–5 (2008).

    Article  CAS  Google Scholar 

  16. Poot, M. et al. Temperature dependence of three-terminal molecular junctions with sulfur end-functionalized tercyclohexylidenes. Nano Lett. 6, 1031–1035 (2006).

    Article  CAS  Google Scholar 

  17. Chae, D. H. et al. Vibrational excitations in single trimetal-molecule transistors. Nano Lett. 6, 165–168 (2006).

    Article  CAS  Google Scholar 

  18. Osorio. E. A. et al. Addition energies and vibrational fine structure measured in electromigrated single-molecule junctions based on an oligophenylenevinylene derivative. Adv. Mater. 19, 281–285 (2007).

    Article  CAS  Google Scholar 

  19. Roch, N., Florens, S., Bouchiat, V., Wernsdorfer, W. & Balestro, F. Quantum phase transition in a single-molecule quantum dot. Nature 453, 633–638 (2008).

    Article  CAS  Google Scholar 

  20. Ward, R. D. et al. Simultaneous measurements of electronic conduction and Raman response in molecular junctions. Nano Lett. 8, 919–924 (2008).

    Article  CAS  Google Scholar 

  21. Thijssen, J. M. & van der Zant, H. S. J. Charge transport and single-electron effects in nanoscale systems. Phys. Stat. Sol. 245, 1455–1470 (2008).

    Article  CAS  Google Scholar 

  22. Osorio, E. A., Bjørnholm, T., Lehn, J.-M., Ruben, M. & van der Zant, H. S. J. Single molecule transport in three-terminal devices. J. Phys. Cond. Mat. 20, 374121 (2008).

    Article  CAS  Google Scholar 

  23. Lindsay, S. M. & Ratner, M. A. Molecular transport junctions: clearing mists. Adv. Mater. 19, 23–31 (2007).

    Article  CAS  Google Scholar 

  24. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  25. Chen, F. & Tao, N. J. Electron transport in single molecules: from benzene to graphene. Acc. Chem. Res. 42, 429–438 (2009).

    Article  CAS  Google Scholar 

  26. Datta, S. Quantum Transport — Atom to Transistor (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  27. Cornil, J. et al. Photoluminescence spectra of oligo-paraphenylenevinylenes: a joint theoretical and experimental characterisation. Chem. Phys. Lett. 278, 139–145 (1997).

    Article  CAS  Google Scholar 

  28. Lu, X. H., Grobis, M., Khoo, K. H., Louie, S. G. & Crommie, M. F. Charge transfer and screening in individual C-60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study. Phys. Rev. B. 70, 115418 (2004).

    Article  Google Scholar 

  29. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    Article  CAS  Google Scholar 

  30. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Article  CAS  Google Scholar 

  31. Thygensen, K. S. & Rubio, A. Renormalization of molecular quasiparticle levels at metal–molecule interfaces: Trends across binding regimes. Phys. Rev. Lett. 102, 046802 (2009).

    Article  Google Scholar 

  32. Sau, J. D. et al. Electronic energy levels of weakly coupled nanostructures: C-60-metal interfaces. Phys. Rev. Lett. 101, 026804 (2008).

    Article  Google Scholar 

  33. Hedegård, P. & Bjørnholm, T. Charge transport through image charged stabilized states in a single molecule single electron transistor device. Chem. Phys. 319, 350–359 (2005).

    Article  Google Scholar 

  34. Kaasbjerg, K. & Flensberg, K. Strong polarization-induced reduction of molecular addition energies in single-molecule nanojunctions. Nano Lett. 8, 3809–3814 (2008).

    Article  CAS  Google Scholar 

  35. Choi, S. H., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    Article  CAS  Google Scholar 

  36. Selzer, Y. & Allara, D. L. Single-molecule electrical junctions. Annu. Rev. Phys. Chem. 57, 593–623 (2006).

    Article  CAS  Google Scholar 

  37. Li, C. et al. Charge transport in single Au|alkanedithiol|Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130, 318–326 (2008).

    Article  CAS  Google Scholar 

  38. Bumm, L. A., Arnold, J. J., Dunbar, T. D., Allara, D. L. & Weiss, P. S. Electron transfer through organic molecules. J. Phys. Chem. B 103, 8122–8127 (1999).

    Article  CAS  Google Scholar 

  39. Lörtscher, E., Ciszek, J. W., Tour, J. M. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    Article  Google Scholar 

  40. Quek, S. Y. et al. Amine-gold linked single-molecule circuits: experiment and theory. Nano Lett. 7, 3477–3482 (2007).

    Article  CAS  Google Scholar 

  41. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    Article  CAS  Google Scholar 

  42. Elbing, M. et al. A single molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    Article  CAS  Google Scholar 

  43. Lafferentz, L. et. al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    Article  CAS  Google Scholar 

  44. Crljen, C., Grigoriev. A., Wendin, G. & Stokbro, K. Nonlinear conductance in molecular devices: Molecular length dependence. Phys. Rev. B 71, 165316 (2005).

    Article  Google Scholar 

  45. Smit, R. H. M. et al. Measuring of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    Article  CAS  Google Scholar 

  46. Kiguchi, M. et al. Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008).

    Article  CAS  Google Scholar 

  47. Huber, R. et al. Electrical conductance of conjugated oligomers at the single molecule level. J. Am. Chem. Soc. 130, 1080–1084 (2008).

    Article  CAS  Google Scholar 

  48. Kushmerick, J. G. et al. Effect of bond-length alternation in molecular wires. J. Am. Chem. Soc. 124, 10654–10655 (2002).

    Article  CAS  Google Scholar 

  49. Biercuk, M. J., Ilani, S., Marcus, C. M. & McEuen, P. L. Electrical transport in single-wall carbon nanotubes. Top. Appl. Phys. 111, 455–493 (2008).

    Article  CAS  Google Scholar 

  50. Smits, E. S. G. et al. Bottom-up organic integrated circuits. Nature 455, 956–959 (2008).

    Article  CAS  Google Scholar 

  51. Dadosh, T. et al. Measurement of the conductance of single conjugated molecules. Nature 436, 677–680 (2005).

    Article  CAS  Google Scholar 

  52. Bernard, L., Calame, M., van der Molen, S. J., Liao, J. & Schönenberger, C. Controlled formation of metallic nanowires via Au nanoparticle ac trapping. Nanotechnology 18, 235202 (2007).

    Article  Google Scholar 

  53. Feldman, A. K. et al. Molecular electronic devices based on single-walled carbon nanotube electrodes. Acc. Chem. Res. 41, 1731–1741 (2008).

    Article  CAS  Google Scholar 

  54. Jain, T., Westerlund, F., Johnson, E., Moth-Poulsen, K. & Bjørnholm, T. Self-assembled nanogaps for single-molecule electronics. ACS Nano. 3, 828–834 (2009).

    Article  CAS  Google Scholar 

  55. Takahashi, M. & Kimura, K. ZEKE photoelectron spectra of trans-stilbene in the S1 state. J. Phys. Chem. 99, 1628 (1995).

    Article  CAS  Google Scholar 

  56. Stuhr-Hansen, N., Christensen, J. B., Harrit, N. & Bjørnholm, T. Novel synthesis of protected thiol end-capped stilbenes and oligo(phenylenevinylene)s (OPVs). J. Org. Chem. 68, 1275–1282 (2003).

    Article  CAS  Google Scholar 

  57. de Leon, N. P., Liang, W., Gu, Q. & Park, H. Vibrational excitation in single-molecule transistors: Deviation from the simple Franck–Condon prediction. Nano Lett. 8, 2963–2967 (2008).

    Article  CAS  Google Scholar 

  58. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  59. Liang, W., Shores, M. P., Bockrath, M., Loong, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 471, 725–729 (2002).

    Article  Google Scholar 

  60. Böhler, T., Edtbauer, A. & Scheer, E. Conductance of individual C-60 molecules measured with controllable gold electrodes. Phys. Rev. B 76, 125432 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Brøndsted Nielsen for calculating the gas phase addition energies of the OPVs, and S. Kubatkin, H. van der Zant, J. Paaske, K. Flensberg and K. Bechgaard for discussions. The work was supported by the EU FP7 project SINGLE (reference: 213609) and the Danish Research Councils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bjørnholm.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moth-Poulsen, K., Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotech 4, 551–556 (2009). https://doi.org/10.1038/nnano.2009.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.176

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research