Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bit storage and bit flip operations in an electromechanical oscillator

A Corrigendum to this article was published on 01 June 2008


The Parametron was first proposed as a logic-processing system almost 50 years ago1. In this approach the two stable phases of an excited harmonic oscillator provide the basis for logic operations2,3,4,5,6. Computer architectures based on LC oscillators were developed for this approach, but high power consumption and difficulties with integration meant that the Parametron was rendered obsolete by the transistor. Here we propose an approach to mechanical logic based on nanoelectromechanical systems7,8,9 that is a variation on the Parametron architecture and, as a first step towards a possible nanomechanical computer10,11,12, we demonstrate both bit storage and bit flip operations.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transduction of the mechanical resonance using the piezoelectric effect.
Figure 2: Parametric resonance dynamics in a mechanical oscillator.
Figure 3: Bit storage and bit flip operations in a parametrically excited mechanical oscillator.


  1. Goto, E. The parametron, a digital computing element which utilises parametric oscillation. Proc. IRE 47, 1304–1316 (1959).

    Article  Google Scholar 

  2. Van den Broeck, C. & Bena, I. Stochastic Processes in Physics, Chemistry and Biology (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  3. Hayashi, C. Nonlinear Oscillations in Physical Systems (Princeton Univ. Press, 1986).

  4. Sanmartin, J. R. O Botafumeiro: Parametric pumping in the middle ages. Am. J. Phys, 52, 937–945 (1984).

    Article  Google Scholar 

  5. Rugar, D. & Grütter, P. Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 67, 699–702 (1991).

    CAS  Article  Google Scholar 

  6. Turner, K. L. et al. Five parametric resonances in a microelectromechanical system. Nature 396, 149–152 (1998).

    CAS  Article  Google Scholar 

  7. Roukes, M. Nanoelectromechanical systems face the future. Phys. World 14, 25–31 (February 2001).

    CAS  Article  Google Scholar 

  8. Roukes, M. L. Mechanical computation, redux? IEEE IEDM Technical Digest 539–542 (2004).

  9. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  Google Scholar 

  10. Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007).

    CAS  Article  Google Scholar 

  11. Badzey, R. L. & Mohanty, P. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature 437, 995–998 (2005).

    CAS  Article  Google Scholar 

  12. Blick, R. H., Qin, H., Kim, H-S. & Marsland, R. A nanomechanical computer—exploring new avenues of computing. New J. Phys. 9, 241 (2007).

    Article  Google Scholar 

  13. Kraus, A. et al. Parametric frequency tuning of phase-locked nanoelectromechanical resonators. Appl. Phys. Lett. 79, 3521–3523 (2001).

    CAS  Article  Google Scholar 

  14. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    CAS  Article  Google Scholar 

  15. Cleland, A. N. & Roukes, M. L. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

    Article  Google Scholar 

  16. Badzey, R. L., Zolfagharkhani, G., Gaidarzhy, A. & Mohanty, P. A controllable nanomechanical memory element. Appl. Phys. Lett. 85, 3587–3589 (2004).

    CAS  Article  Google Scholar 

  17. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    CAS  Article  Google Scholar 

  18. Jang, J. E. et al. Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nature Nanotech. 3, 26–30 (2008).

    CAS  Article  Google Scholar 

  19. Carr, S. M., Lawrence, W. E. & Wybourne, M. N. Buckling cascade of free-standing mesoscopic beams. Europhys. Lett. 69, 952–958 (2005).

    CAS  Article  Google Scholar 

  20. Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496 (2003).

    CAS  Article  Google Scholar 

  21. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    CAS  Article  Google Scholar 

Download references


The authors are grateful to S. Miyashita for growing the heterostructure. The authors thank K. Takashina, M. Pioro-Ladrière, N. Lambert, P. Giudici, S. Camou and Y. Hirayama for useful discussions and advice. This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI(16206003).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to I. Mahboob or H. Yamaguchi.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mahboob, I., Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nature Nanotech 3, 275–279 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research