Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Classification and control of the origin of photoluminescence from Si nanocrystals

Abstract

Silicon dominates the electronics industry, but its poor optical properties mean that III–V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Imaging of Si nanoparticles by HRTEM.
Figure 2: Room-temperature PL spectra.
Figure 3: ESR spectra at 4.2 K
Figure 4: Band structure and competing PL mechanisms for Si nanocrystals embedded in SiO2.
Figure 5: Shift of the centre of mass of the PL peak (ΔECM) as a function of magnetic field at 85 K.
Figure 6: Effect of UV irradiation on a passivated sample.

References

  1. Ball, P. Let there be light. Nature 409, 974–976 (2001).

    CAS  Article  Google Scholar 

  2. Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990).

    CAS  Article  Google Scholar 

  3. Lehmann, V. & Gösele, U. Porous Si formation: A quantum wire effect. Appl. Phys. Lett. 58, 856–858 (1991).

    CAS  Article  Google Scholar 

  4. Fauchet, P. M. Photoluminescence and electroluminescence from porous silicon, J. Lumin. 70, 294–309 (1996).

    CAS  Article  Google Scholar 

  5. Wolkin, M. V. et al. Electronic states and luminescence in porous Si: The role of oxygen. Phys. Rev. Lett. 82, 197–200 (1999).

    CAS  Article  Google Scholar 

  6. Hadjisavvas, G. & Kelires, P. C. Theory of interface structure, energetics, and electronic properties of embedded Si/a-SiO2 nanocrystals. Physica E 38, 99–105 (2007).

    CAS  Article  Google Scholar 

  7. Heitmann, J., Müller, F., Zacharias, M. & Gösele, U. Silicon nanocrystals: Size matters. Adv. Mater 17, 795–803 (2005).

    CAS  Article  Google Scholar 

  8. Averboukh, B. et al. Luminescence studies of a Si/SiO2 superlattice. J. Appl. Phys. 92, 3564–3568 (2002).

    CAS  Article  Google Scholar 

  9. Puzder, A., Williamson, A. J., Grossman, J. C. & Galli, G. Surface chemistry of silicon nanoclusters. Phys. Rev. Lett. 88, 097401 (2002).

    Article  Google Scholar 

  10. Hadjisavvas, G. & Kelires, P. C. Structure and energetics of Si nanocrystals embedded in a‐SiO2 . Phys. Rev. Lett. 93, 226104 (2004).

    CAS  Article  Google Scholar 

  11. Wang, X. X. et al. Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix. Phys. Rev. B 72, 195313 (2005).

    Article  Google Scholar 

  12. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzo, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000).

    CAS  Article  Google Scholar 

  13. Walters, R. J., Bourianoff, G. I. & Atwater, H. A. Field-effect electroluminescence in silicon nanocrystals. Nature Mater. 4, 143–146 (2005).

    CAS  Article  Google Scholar 

  14. Tiwari, S. et al. A silicon nanocrystal based memory. Appl. Phys. Lett. 68, 1377–1379 (1996).

    CAS  Article  Google Scholar 

  15. Delerue, C., Allan, G. & Lannoo, M. Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B 48, 11024–11036 (1993).

    CAS  Article  Google Scholar 

  16. Delley, B. & Steigmeier, E. F. Quantum confinement in Si nanocrystals. Phys. Rev. B 47, 1397–1400 (1993).

    CAS  Article  Google Scholar 

  17. Ogüt, S., Chelikowsky, J. R. & Louie, S. G. Quantum confinement and optical gaps in Si nanocrystals. Phys. Rev. Lett. 79, 1770–1773 (1997).

    Article  Google Scholar 

  18. Hayne, M. et al. Electron and hole confinement in stacked self-assembled InP quantum dots. Phys. Rev. B 62, 10324–10328 (2000).

    CAS  Article  Google Scholar 

  19. Hayne, M. et al. Pulsed magnetic fields as probe of self-assembled semiconductor nanostructures. Physica B 346–347, 421–427 (2004).

    Article  Google Scholar 

  20. Poindexter, E. H. & Caplan, P. J. Characterization of Si/SiO2 interface defects by electron spin resonance. Prog. Surf. Sci. 14, 201–294 (1983).

    CAS  Article  Google Scholar 

  21. Zacharias, M. et al. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661–663 (2002).

    CAS  Article  Google Scholar 

  22. Zimina, A. et al. Electronic structure and chemical environment of silicon nanoclusters embedded in a silicon dioxide matrix. Appl. Phys. Lett. 88, 163103 (2006).

    Article  Google Scholar 

  23. Stesmans, A. & Afanas'ev, V. V. Electron spin resonance features of interface defects in thermal (100)Si/SiO2 . J. Appl. Phys. 83, 2449–2457 (1998).

    CAS  Article  Google Scholar 

  24. Stesmans, A., Nouwen, B. & Afanas'ev, V. V. Pb1 interface defect in thermal (100)Si/SiO2: 17Si hyperfine interaction. Phys. Rev. B 58, 15801–15809 (1998).

    CAS  Article  Google Scholar 

  25. Warren, W. L., Poindexter, E. H., Offenberg, M. & Müller-Warmuth, W. Paramagnetic point defects in amorphous silicon dioxide and amorphous silicon nitride thin films. J. Electrochem. Soc. 139, 872–880 (1992).

    CAS  Article  Google Scholar 

  26. Stesmans, A. & Scheerlinck, F. Generation aspects of the delocalized intrinsic EX defect in thermal SiO2 . J. Appl. Phys. 75, 1047–1058 (1994).

    CAS  Article  Google Scholar 

  27. Stesmans, A. & Scheerlinck, F. Natural intrinsic EX center in thermal SiO2 on Si: 17O hyperfine interaction. Phys. Rev. B 50, 5204–5212 (1994).

    CAS  Article  Google Scholar 

  28. Tsai, T. E., Griscom, D. L. & Friebele E. J. Mechanism of intrinsic Si E'-center photogeneration in high-purity silica. Phys. Rev. Lett. 61, 444–446 (1988).

    CAS  Article  Google Scholar 

  29. Walck, S. N. & Reinecke, T. L. Exciton diamagnetic shift in semiconductor nanostrucures. Phys. Rev. B 57, 9088–9096 (1998).

    CAS  Article  Google Scholar 

  30. Heitmann, J. et al. Excitons in Si nanocrystals: Confinement and migration effects. Phys. Rev. B 69, 195309 (2004).

    Article  Google Scholar 

  31. Sychugov, I., Juhasz, R., Valenta, J. & Linnros, J. Narrow luminescence linewidth of a silicon quantum dot. Phys. Rev. Lett. 94, 087405 (2005).

    Article  Google Scholar 

  32. Yi, L. X., Heitmann, J., Scholz, R. & Zacharias, M. Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers. Appl. Phys. Lett. 81, 4248–4250 (2002).

    CAS  Article  Google Scholar 

  33. Davies, J. H. The Physics of Low-Dimensional Semiconductors (Cambridge Univ. Press, Cambridge, UK, 1998).

    Google Scholar 

  34. Abtew, T. A. & Drabold, D. A. Atomistic simulation of light-induced changes in hydrogenated amorphous Si. J. Phys. Condens. Matter 18, L1–L6 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the SANDiE Network of Excellence of the European Commission (NMP-CT-2004-500101), the Belgian Inter-University Attraction Pole, Flemish Geconcerteerde Onderzoeksacties and Fonds voor Wetenschappelijke Onderzoek programmes and project ZA191/14-3 of the German Research Foundation (DFG). M.H. is an Academic Fellow of the Research Councils UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hayne.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Godefroo, S., Hayne, M., Jivanescu, M. et al. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotech 3, 174–178 (2008). https://doi.org/10.1038/nnano.2008.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.7

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research