Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular discrimination inside polymer nanotubules

Abstract

Recognition of small organic molecules and large biomolecules such as proteins is of great importance in pharmaceutical as well as biological applications. Recognition inside a nanoporous membrane is particularly attractive, because of the advantages associated with ligand–receptor interactions in confined spaces. Classical nanoporous membrane-based separations simply use the difference in size of the analytes relative to pore size in the membrane. In order to bring about selectivity beyond size, it is necessary that methods for functionalizing the membrane pores are readily available. Here, we describe a simple approach to functionalize the nanopores within these membranes using self-assembling and non-self-assembling polymers. We show that these modified membranes separate small molecules based on size, charge and hydrophobicity. We also demonstrate here that proteins can be differentially transported through the nanopores based on their size and/or electrostatics.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic illustration of functionalization of the nanoporous membranes with polymers.
Figure 2: Molecular structures of the compounds used in this study.
Figure 3: Electron microscopy and pore size measurements of the polymer nanotubes and photograph of the separation of dye molecules.
Figure 4: Separation of dyes and proteins using the polymer-modified membranes.

References

  1. Lakshmi, B. B. & Martin, C. R. Enantioseparation using apoenzymes immobilized in a porous polymeric membrane. Nature 388, 758–760 (1997).

    CAS  Article  Google Scholar 

  2. Higuchi, A., Hara, M., Horiuchi, T. & Nakagawa, T. Optical resolution of amino acids by ultrafiltration membranes containing serum albumin. J. Membr. Sci. 93, 157–164 (1994).

    CAS  Article  Google Scholar 

  3. Nakamura, M., Kiyohara, S., Saito, K., Sugita, K. & Sugo, T. Chiral separation of DL-tryptophan using porous membranes containing multilayered bovine serum albumin crosslinked with glutaraldehyde. J. Chromatogr. A 822, 53–58 (1998).

    CAS  Article  Google Scholar 

  4. Lee, S. B. et al. Antibody-based bio-nanotubes membranes for enantiomeric drug separations. Science 296, 2198–2200 (2002).

    CAS  Article  Google Scholar 

  5. Kohli, P. et al. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305, 984–986 (2004).

    CAS  Article  Google Scholar 

  6. Appella, D. H. et al. Residue-based control of helix shape in β-peptide oligomers. Nature 387, 381–384 (1997).

    CAS  Article  Google Scholar 

  7. Zimmerman, S. C., Zeng, F., Reichert, D. E. C. & Kolotuchin, S. V. Self-assembling dendrimers. Science 271, 1095–1098 (1996).

    CAS  Article  Google Scholar 

  8. Tominaga, M., Konishi, K. & Aida, T. Catalysis of nucleobase via multiple hydrogen-bonding interactions: acceleration of aminolysis of 6-chloropurine derivatives by uracils. J. Am. Chem. Soc. 121, 7704–7705 (1999).

    CAS  Article  Google Scholar 

  9. Newkome, G. R. et al. Nanoassembly of fractal polymer: a molecular ‘Sierpinski hexagonal gasket’. Science 312, 1782–1785 (2006).

    CAS  Article  Google Scholar 

  10. DeLano, W. L., Ultsch, M. H., De Vos, A. M. & Wells, J. A. Convergent solutions to binding at a protein–protein interface. Science 287, 1279–1284 (2000).

    CAS  Article  Google Scholar 

  11. Berg, T. Modulation of protein–protein interactions with small organic molecules. Angew. Chem. Int. Edn 42, 2462–2481 (2003).

    CAS  Article  Google Scholar 

  12. Xu, H., Hong, R., Lu, T., Uzun, O. & Rotello, V. M. Recognition-directed orthogonal self-assembly of polymers and nanoparticles on patterned surfaces. J. Am. Chem. Soc. 128, 3162–3163 (2006).

    CAS  Article  Google Scholar 

  13. Bayraktar, H., You, C.-C., Knapp, M. J. & Rotello, V. M. Facial control of nanoparticle binding to cytochrome C. J. Am. Chem. Soc. 129, 2732–2733 (2007).

    CAS  Article  Google Scholar 

  14. Xu, Q.-H. et al. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions. Proc. Natl Acad. Sci. USA 101, 11634–11639 (2004).

    CAS  Article  Google Scholar 

  15. Jirage, K. B., Hulteen, J. C. & Martin, C. R. Nanotubule-based molecular filtration membranes. Science 278, 655–658 (1997).

    CAS  Article  Google Scholar 

  16. Martin, C. R., Nishizawa, M., Jirage, K. B. & Kang, M. Investigation of the transport properties of gold nanotubule membranes. J. Phys. Chem. B 105, 1925–1934 (2001).

    CAS  Article  Google Scholar 

  17. Jirage, K. B., Hulteen, J. C. & Martin, C. R. Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal. Chem. 71, 4913–4918 (1999).

    CAS  Article  Google Scholar 

  18. Ku, J.-R. et al. pH and ionic strength effects on amino acid transport through Au-nanotubule membranes charged with self-assembled monolayers. J. Phys. Chem. C 111, 2965–2973 (2007).

    CAS  Article  Google Scholar 

  19. Hulteen, J. C., Jirage, K. B. & Martin, C. R. Introducing chemical transport selectivity into gold nanotubule membranes. J. Am. Chem. Soc. 120, 6603–6604 (1998).

    CAS  Article  Google Scholar 

  20. Chun, K.-Y. & Stroeve, P. Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18, 4653–4658 (2002).

    CAS  Article  Google Scholar 

  21. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    CAS  Article  Google Scholar 

  22. Krishnamoorthy, K. & Zoski, C. G. Fabrication of 3D gold nanoelectrode ensembles by chemical etching. Anal. Chem. 77, 5068–5071 (2005).

    CAS  Article  Google Scholar 

  23. Yu, S., Li, N., Wharton, J. & Martin, C. R. Nano wheat fields prepared by plasma-etching gold nanowire-containing membranes. Nano Lett. 3, 815–818 (2003).

    CAS  Article  Google Scholar 

  24. Yamada, K., Gasparac, R. & Martin, C. R. Electrochemical and transport properties of templated gold/polypyrrole-composite microtube membranes. J. Electrochem. Soc. 151, E14–E19 (2004).

    CAS  Article  Google Scholar 

  25. Savariar, E. N., Aathimanikandan, S. V. & Thayumanavan, S. Supramolecular assemblies from amphiphilic homopolymers: testing the scope. J. Am. Chem. Soc. 128, 16224–16230 (2006).

    CAS  Article  Google Scholar 

  26. Lvov, Y., Decher, G. & Mohwald, H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9, 481–486 (1993).

    CAS  Article  Google Scholar 

  27. Ferreira, M. & Rubner, M. F. Molecular level processing of conjugated polymers. 1. Layer-by-layer manipulation of conjugated polyions. Macromolecules 28, 7107–7114 (1995).

    CAS  Article  Google Scholar 

  28. Wirtz, M., Yu, S. & Martin, C. R. Template synthesized gold nanotube membranes for chemical separations and sensing. Analyst 127, 871–879 (2002).

    CAS  Article  Google Scholar 

  29. Ku, J.-R. & Stroeve, P. Protein diffusion in charged nanotubes: ‘on-off’ behavior of molecular transport. Langmuir 20, 2030–2032 (2004).

    CAS  Article  Google Scholar 

  30. Yamaguchi, A. et al. Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nature Mater. 3, 337–341 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation Center for Fueling the Future (CHE-0739227) and Nanoscale Science and Engineering Center (DMI-0531171) at the University of Massachusetts Amherst. We thank J. Zimberlin for help with the pressure change measurements during the determination of pore size.

Author information

Authors and Affiliations

Authors

Contributions

E.N.S. and K.K. performed the experiments. All authors analysed the data, carried out project planning, discussed the results and commented on the manusript.

Corresponding author

Correspondence to S. Thayumanavan.

Supplementary information

Supplemantary Information

Supplementary figures and supplementary tables (PDF 277 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Savariar, E., Krishnamoorthy, K. & Thayumanavan, S. Molecular discrimination inside polymer nanotubules. Nature Nanotech 3, 112–117 (2008). https://doi.org/10.1038/nnano.2008.6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.6

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research