Harnessing biological motors to engineer systems for nanoscale transport and assembly

Article metrics

Abstract

Living systems use biological nanomotors to build life's essential molecules—such as DNA and proteins—as well as to transport cargo inside cells with both spatial and temporal precision. Each motor is highly specialized and carries out a distinct function within the cell. Some have even evolved sophisticated mechanisms to ensure quality control during nanomanufacturing processes, whether to correct errors in biosynthesis or to detect and permit the repair of damaged transport highways. In general, these nanomotors consume chemical energy in order to undergo a series of shape changes that let them interact sequentially with other molecules. Here we review some of the many tasks that biomotors perform and analyse their underlying design principles from an engineering perspective. We also discuss experiments and strategies to integrate biomotors into synthetic environments for applications such as sensing, transport and assembly.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Molecular discrimination during sequential assembly.
Figure 2: Motor-specific cargo transport in neurons.
Figure 3: Track designs to guide nanomotor-driven filaments ex vivo.
Figure 4: Selecting specific cargo by molecular recognition.
Figure 5: Cargo loading stations93.
Figure 6: Filament tracks made from engineered bundles of microtubules97.
Figure 7: Quality control procedures for damage recognition and molecular repair.
Figure 8: Precision control of nanomotors with external control 'knobs'.

© 2003 PNAS

References

  1. 1

    Rodnina, M. V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).

  2. 2

    Kunkel, T. A. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898 (2004).

  3. 3

    Erie, D. A., Hajiseyedjavadi, O., Young, M. C. & von Hippel, P. H. Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science 262, 867 (1993).

  4. 4

    Liu, D. R., Magliery, T. J., Pastrnak, M. & Schultz, P. G. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc. Natl Acad. Sci. 94, 10092–10097 (1997).

  5. 5

    Bustamante, C., Smith, S. B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000).

  6. 6

    Davenport, R. J., Wuite, G. J. L., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000).

  7. 7

    Greulich, K. O. Single-Molecule Studies on DNA and RNA. ChemPhysChem 6, 2459–2471 (2005).

  8. 8

    Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

  9. 9

    Wuite, G. J., Smith, S. B., Young, M., Keller, D. & Bustamante, C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103–106 (2000).

  10. 10

    Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795 (1996).

  11. 11

    Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122 (1992).

  12. 12

    Williams, M. C. & Rouzina, I. Force spectroscopy of single DNA and RNA molecules. Curr. Opin. Struct. Biol 12, 330–336 (2002).

  13. 13

    Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

  14. 14

    Jeney, S., Stelzer, E. H., Grubmuller, H. & Florin, E. L. Mechanical properties of single motor molecules studied by three-dimensional thermal force probing in optical tweezers. ChemPhysChem 5, 1150–1158 (2004).

  15. 15

    Mehta, A. D. Single-molecule biomechanics with optical methods. Science 283, 1689–1695 (1999).

  16. 16

    Mogilner, A. & Oster, G. Polymer motors: pushing out the front and pulling up the back. Curr. Biol. 13, 721–733 (2003).

  17. 17

    Schnitzer, M. J., Visscher, K. & Block, S. M. Force production by single kinesin motors. Nature Cell Biol. 2, 718–723. (2000).

  18. 18

    Strick, T., Allemand, J. F., Croquette, V. & Bensimon, D. The manipulation of single biomolecules. Phys. Today 54, 46–51 (October, 2001).

  19. 19

    Ha, T. Single-molecule fluorescence methods for the study of nucleic acids. Curr. Opin. Struct. Biol. 11, 287–292 (2001).

  20. 20

    Kapanidis, A. N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006).

  21. 21

    Keller, R. A. et al. Single-molecule fluorescence analysis in solution. Appl. Spectrosc. 50, 12A–32A (1996).

  22. 22

    Mullis, K. B. The Polymerase Chain Reaction. Nobel Lecture (1993).

  23. 23

    van Hest, J. C. M. & Tirrell, D. A. Protein-based materials, toward a new level of structural control. Chem. Commun. 19, 1897–1904 (2001).

  24. 24

    Fodor, S. P. et al. Multiplexed biochemical assays with biological chips. Nature 364, 555–556 (1993).

  25. 25

    Merrifield, R. B. Automated synthesis of peptides. Science 150, 178–185 (1965).

  26. 26

    Ratner, D. M., Swanson, E. R. & Seeberger, P. H. Automated synthesis of a protected N-linked glycoprotein core pentasaccharide. Org. Lett. 5, 4717–4720 (2003).

  27. 27

    Ball, P. It all falls into place. Nature 413, 667–668 (2001).

  28. 28

    Pavel, I. S. Assembly of gold nanoparticles by ribosomal molecular machines PhD thesis, Univ. Texas at Austin (2005).

  29. 29

    Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F. & Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

  30. 30

    Chen, H. L. & Goel, A. in DNA Computing. Lecture Notes in Computer Science Vol. 3384, 62–75 (Springer, Berlin/Heidelberg, 2005).

  31. 31

    Hess, H. et al. Molecular self-assembly of 'nanowires'and 'nanospools' using active transport. Nano Lett. 5, 629–633 (2005).

  32. 32

    Winfree, E. & Bekbolatov, R. in DNA Computing. Lecture Notes in Computer Science Vol. 2943, 126–144 (Springer, Berlin/Heidelberg, 2004).

  33. 33

    Choi, I. S., Bowden, N. & Whitesides, G. M. Macroscopic, hierarchical, two-dimensional self-assembly. Angew. Chem. Intl Edn Engl. 38, 3078–3081 (1999).

  34. 34

    Whitesides, G. M. & Boncheva, M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl Acad. Sci. USA 99, 4769–4774 (2002).

  35. 35

    Caviston, J. P. & Holzbaur, E. L. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 16, 530–537 (2006).

  36. 36

    Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, Massachusetts, 2001).

  37. 37

    Lakadamyali, M., Rust, M. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

  38. 38

    Lakadamyali, M., Rust, M. J., Babcock, H. P. & Zhuang, X. Visualizing infection of individual influenza viruses. Proc. Natl Acad. Sci. USA 100, 9280–9285 (2003).

  39. 39

    Månsson, A. & Linke, H. Controlled Nanoscale Motion. Proc. Nobel Symp. 131, Vol. 711. (Springer, Berlin, 2007).

  40. 40

    Miki, H., Okada, Y. & Hirokawa, N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 15, 467–476 (2005).

  41. 41

    Rust, M. J., Lakadamyali, M., Zhang, F. & Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nature Struct. Mol. Biol. 11, 567–573 (2004).

  42. 42

    Sotelo-Silveira, J. R., Calliari, A., Kun, A., Koenig, E. & Sotelo, J. R. RNA trafficking in axons. Traffic 7, 508–515 (2006).

  43. 43

    Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480. (2003).

  44. 44

    Vallee, R. B. & Sheetz, M. P. Targeting of motor proteins. Science 271, 1539–1544 (1996).

  45. 45

    Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

  46. 46

    Guzik, B. W. & Goldstein, L. S. Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction. Curr. Opin. Cell Biol. 16, 443–450 (2004).

  47. 47

    Gunawardena, S. & Goldstein, L. S. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401 (2001).

  48. 48

    Gunawardena, S. & Goldstein, L. S. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J. Neurobiol. 58, 258–271 (2004).

  49. 49

    Mandelkow E, M. E. Kinesin motors and disease. Trends Cell Biol. 12, 585–591 (2002).

  50. 50

    Ström, A. L. et al. Retrograde axonal transport and motor neuron disease. J. Neurochem. Preprint at <http://www.ncbi.nlm.nih.gov/pubmed/18384644> (23 April 2008).

  51. 51

    Mukhopadhyay, R. & Hoh, J. H. AFM force measurements on microtubule-associated proteins: the projection domain exerts a long-range repulsive force. FEBS Lett. 505, 374–378 (2001).

  52. 52

    Mizuno, N. et al. Dynein and kinesin share an overlapping microtubule-binding site. EMBO J. 23, 2459–2467 (2004).

  53. 53

    Vale, R. D. & Toyoshima, Y. Y. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52, 459–469 (1988).

  54. 54

    Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995).

  55. 55

    Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).

  56. 56

    Seitz, A. & Surrey, T. Processive movement of single kinesins on crowded microtubules visualized using quantum dots. EMBO J. 25, 267–277 (2006).

  57. 57

    Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl Acad. Sci. USA 93, 1913–1917 (1996).

  58. 58

    Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

  59. 59

    Diehl, M. R., Zhang, K., Lee, H. J. & Tirrell, D. A. Engineering cooperativity in biomotor-protein assemblies. Science 311, 1468–1471 (2006).

  60. 60

    Hunt, A. J. & Howard, J. Kinesin swivels to permit microtubule movement in any direction. Proc. Natl Acad. Sci. USA 90, 11653–11657 (1993).

  61. 61

    Clemmens, J. et al. Principles of microtubule guiding on microfabricated kinesin-coated surfaces: chemical and topographic surface patterns. Langmuir 19, 10967–10974 (2003).

  62. 62

    Reuther, C., Hajdo, L., Tucker, R., Kasprzak, A. A. & Diez, S. Biotemplated nanopatterning of planar surfaces with molecular motors. Nano Lett. 6, 2177–2183 (2006).

  63. 63

    Clemmens, J., Hess, H., Howard, J. & Vogel, V. Analysis of microtubule guidance by microfabricated channels coated with kinesin. Langmuir 19, 1738–1744 (2003).

  64. 64

    Hess, H. et al. Molecular shuttles operating undercover: a new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Lett. 3, 1651–1655 (2003).

  65. 65

    Hiratsuka, Y., Tada, T., Oiwa, K., Kanayama, T. & Uyeda, T. Q. Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys. J. 81, 1555–1561. (2001).

  66. 66

    Moorjani, S. G., Jia, L., Kackson, T. N. & Hancock, W. O. Lithographically patterned channels spatially segregate kinesin motor activity and effectively guide microtubule movements. Nano Lett. 3, 633–637 (2003).

  67. 67

    Bunk, R. et al. Actomyosin motility on nanostructured surfaces. Biochem. Biophys. Res. Commun. 301, 783–788 (2003).

  68. 68

    Sundberg, M. et al. Actin filament guidance on a chip: toward high-throughput assays and lab-on-a-chip applications. Langmuir 22, 7286–7295 (2006).

  69. 69

    Clemmens, J. et al. Motor-protein 'roundabouts': microtubules moving on kinesin-coated tracks through engineered networks. Lab Chip 4, 83–86 (2004).

  70. 70

    Hess, H., Clemmens, J., Howard, J. & Vogel, V. Surface imaging by self-propelled nanoscale probes. Nano Lett. 2, 113–116 (2002).

  71. 71

    Stracke, R., Böhm, K. J., Burgold, J., Schacht, H.-J. & Unger, E. Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system. Nanotechnology 11, 52–56 (2000).

  72. 72

    Brown, T. B. & Hancock, W. O. A polarized microtubule array for kinesin-powered nanoscale assembly and force generation. Nano Lett. 28, 571–576 (2005).

  73. 73

    Nitta, T., Tanahashi, A., Hirano, M. & Hess, H. Simulating molecular shuttle movements: towards computer-aided design of nanoscale transport systems. Lab Chip 6, 881–885 (2006).

  74. 74

    Vogel, V. & Hess, H. in Lecture Notes Proceedings Nobel Symposium Vol. 711, 367–383 (Springer, Berlin/Heidelberg, 2007).

  75. 75

    Stracke, R., Bohm, K. J., Wollweber, L., Tuszynski, J. A. & Unger, E. Analysis of the migration behaviour of single microtubules in electric fields. Biochem. Biophys. Res. Commun. 293, 602–609. (2002).

  76. 76

    van den Heuvel, M. G., de Graaff, M. P. & Dekker, C. Molecular sorting by electrical steering of microtubules in kinesin-coated channels. Science 312, 910–914 (2006).

  77. 77

    Darnton, N., Turner, L., Breuer, K. & Berg, H. C. Moving fluid with bacterial carpets. Biophys. J. 86, 1863–1870 (2004).

  78. 78

    Hiratsuka, Y., Miyata, M., Tada, T. & Uyeda, T. Q. A microrotary motor powered by bacteria. Proc. Natl Acad. Sci. USA 103, 13618–13623 (2006).

  79. 79

    Bachand, G. D., Rivera, S. B., Carroll-Portillo, A., Hess, H. & Bachand, M. Active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay. Small 2, 381–385 (2006).

  80. 80

    Hirabayashi, M. et al. Malachite green-conjugated microtubules as mobile bioprobes selective for malachite green aptamers with capturing/releasing ability. Biotechnol. Bioeng. 94, 473–480 (2006).

  81. 81

    Martin, B. D. et al. An engineered virus as a bright fluorescent tag and scaffold for cargo proteins: capture and transport by gliding microtubules. J. Nanosci. Nanotechnol. 6, 2451–2460 (2006).

  82. 82

    Muthukrishnan, G., Hutchins, B. M., Williams, M. E. & Hancock, W. O. Transport of semiconductor nanocrystals by kinesin molecular motors. Small 2, 626–630 (2006).

  83. 83

    Taira, S. et al. Selective detection and transport of fully matched DNA by DNA-loaded microtubule and kinesin motor protein. Biotechnol. Bioeng. 95, 533–538 (2006).

  84. 84

    Hess, H., Clemmens, J., Qin, D., Howard, J. & Vogel, V. Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett. 1, 235–239 (2001).

  85. 85

    Hess, H., Howard, J. & Vogel, V. A piconewton forcemeter assembled from microtubules and kinesins. Nano Lett. 2, 1113–1115 (2002).

  86. 86

    Boal, A. K., Bachand, G. D., Rivera, S. B. & Bunker, B. C. Interactions between cargo-carrying biomolecular shuttles. Nanotechnology 17, 349–354 (2006).

  87. 87

    Diez, S. et al. Stretching and transporting DNA molecules using motor proteins. Nano Lett. 3, 1251–1254 (2003).

  88. 88

    Brunner, C., Wahnes, C. & Vogel, V. Cargo pick-up from engineered loading stations by kinesin driven molecular shuttles. Lab on a Chip 7, 1263–1271 (2007).

  89. 89

    Ramachandran, S., Ernst, K. H., Bachand, G. D., Vogel, V. & Hess, H. Selective loading of kinesin-powered molecular shuttles with protein cargo and its application to biosensing. Small 2, 330 (2006).

  90. 90

    Dinu, C. Z. et al. Parallel manipulation of bifunctional DNA molecules on structured surfaces using kinesin-driven microtubules. Small 2, 1090–1098 (2006).

  91. 91

    Soldati, T. & Schliwa, M. Powering membrane traffic in endocytosis and recycling. Nature Rev. Mol. Cell Biol. 7, 897–908 (2006).

  92. 92

    Bachand, M., Trent, A. M., Bunker, B. C. & Bachand, G. D. Physical factors affecting kinesin-based transport of synthetic nanoparticle cargo. J. Nanosci. Nanotechnol. 5, 718–722 (2005).

  93. 93

    Du, Y. Z. et al. Motor protein nano-biomachine powered by self-supplying ATP. Chem. Commun., 2080–2082 (2005).

  94. 94

    Kufer, S. K., Puchner, E. M., Gumpp, H., Liedl, T. & Gaub, H. E. Single-molecule cut-and-paste surface assembly. Science 319, 594–596 (2008).

  95. 95

    Chakravarty, A., Howard, L. & Compton, D. A. A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract. Mol. Biol. Cell 15, 2116–2132 (2004).

  96. 96

    Surrey, T., Nedelec, F., Leibler, S. & Karsenti, E. Physical properties determining self-organization of motors and microtubules. Science 292, 1167–1171. (2001).

  97. 97

    Doot, R. K., Hess, H., Vogel, V. Engineered networks of oriented microtubule filaments for directed cargo transport. Soft Matter 3, 349–356 (2007).

  98. 98

    Beeg, J. et al. Transport of beads by several kinesin motors. Biophys. J. 94, 532 (2008).

  99. 99

    Henry, T., Gorvel, J. P. & Meresse, S. Molecular motors hijacking by intracellular pathogens. Cell Microbiol. 8, 23–32 (2006).

  100. 100

    Soo, F. S. & Theriot, J. A. Large-scale quantitative analysis of sources of variation in the actin polymerization-based movement of Listeria monocytogenes. Biophys. J. 89, 703–723 (2005).

  101. 101

    Rietdorf, J. et al. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nature Cell Biol. 3, 992–1000 (2001).

  102. 102

    Smith, G. A., Gross, S. P. & Enquist, L. W. Herpes viruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc. Natl Acad. Sci. USA 98, 3466–3470 (2001).

  103. 103

    Döhner, K., Nagel, C.-H. & Sodeik, B. Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol. 13, 320–327 (2005).

  104. 104

    Sodeik, B. Unchain my heart, baby let me go: the entry and intracellular transport of HIV. Cell Biol. 159, 393–395 (2002).

  105. 105

    Kulkarni, R. P., Wu, D. D., Davis, M. E. & Fraser, S. E. Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy. Proc. Natl Acad. Sci. USA 102, 7523–7528 (2005).

  106. 106

    Suh, J., Wirtz, D. & Hanes, J. Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl Acad. Sci. USA 100, 3878–3882. (2003).

  107. 107

    Goel, A., Astumian, R. D. & Herschbach, D. Tuning and switching a DNA polymerase motor with mechanical tension. Proc. Natl Acad. Sci. USA 100, 9699–9704 (2003).

  108. 108

    Donlin, M. J., Patel, S. S. & Johnson, K. A. Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry 30, 538–546 (1991).

  109. 109

    Fersht, A. R., Knill-Jones, J. W. & Tsui, W. C. Kinetic basis of spontaneous mutation. Misinsertion frequencies, proofreading specificities and cost of proofreading by DNA polymerases of Escherichia coli. J. Mol. Biol. 156, 37–51 (1982).

  110. 110

    Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974).

  111. 111

    Hopfield, J. J. The energy relay: a proofreading scheme based on dynamic cooperativity and lacking all characteristic symptoms of kinetic proofreading in DNA replication and protein synthesis. Proc. Natl Acad. Sci. USA 77, 5248 (1980).

  112. 112

    Rodnina, M. V. & Wintermeyer, W. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem. Sci. 26, 124–130 (2001).

  113. 113

    Wang, D. & Hawley, D. K. Identification of a 3′→5′exonuclease activity associated with human RNA polymerase II. Proc. Natl Acad. Sci. USA 90, 843–847 (1993).

  114. 114

    Cavalli, V., Kujala, P., Klumperman, J. & Goldstein, L. S. Sunday Driver links axonal transport to damage signaling. J. Cell Biol. 168, 775–787 (2005).

  115. 115

    Mandelkow, E. M., Stamer, K., Vogel, R., Thies, E. & Mandelkow, E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol. Aging 24, 1079–1085 (2003).

  116. 116

    Goel, A., Ellenberger, T., Frank-Kamenetskii, M. D. & Herschbach, D. Unifying themes in DNA replication: reconciling single molecule kinetic studies with structural data on DNA polymerases. J. Biomol. Struct. Dyn. 19, 571–584 (2002).

  117. 117

    Guydosh, N. R. & Block, S. M. Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc. Natl Acad. Sci. USA 103, 8054–8059 (2006).

  118. 118

    Spudich, J. Molecular motors take tension in stride. Cell 126, 242–244 (2006).

  119. 119

    Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

  120. 120

    Veigel, C., Schmitz, S., Wang, F. & Sellers, J. R. Load-dependent kinetics of myosin-V can explain its high processivity. Nature Cell Biol. 7, 861–869 (2005).

  121. 121

    Maier, B., Bensimon, D. & Croquette, V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Natl Acad. Sci. USA 97, 12002–12007 (2000).

  122. 122

    Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).

  123. 123

    Shaevitz, J. W., Abbondanzieri, E. A., Landick, R. & Block, S. Backtracking by single RNA polymerase molecules observed at near-base pair resolution. Nature 426, 684–687 (2003).

  124. 124

    Sinha, D. K., Bhalla, U. S. & Shivashankar, G. V. Kinetic measurement of ribosome motor stalling force. Appl. Phys. Lett. 85, 4789–4791 (2004).

  125. 125

    Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997).

  126. 126

    Bustamante, C., Keller, D. & Oster, G. The physics of molecular motors. Acc. Chem. Res. 34, 412–420 (2001).

  127. 127

    Goel, A., Frank-Kamenetskii, M. D., Ellenberger, T. & Herschbach, D. Tuning DNA 'strings': modulating the rate of DNA replication with mechanical tension. Proc. Natl Acad. Sci. USA 98, 8485–8489 (2001).

  128. 128

    Goel, A. & Herschbach, D. R. Controlling the speed and direction of molecular motors that replicate DNA. Proc. SPIE 5110, 63–68 (2003).

  129. 129

    Mallik, R., Carter, B. C., Lex, S. A., King, S. J. & Gross, S. P. Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004).

  130. 130

    Rosenfeld, S. S., Fordyce, P. M., Jefferson, G. M., King, P. H. & Block, S. M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003).

  131. 131

    Andricioaei, I., Goel, A., Herschbach, D. & Karplus, M. Dependence of DNA polymerase replication rate on external forces: a model based on molecular dynamics simulations. Biophys. J. 87, 1478–1497 (2004).

  132. 132

    Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mater. 1, 173–177 (2002).

  133. 133

    Konishi, K., Uyeda, T. Q. & Kubo, T. Genetic engineering of a Ca(2+) dependent chemical switch into the linear biomotor kinesin. FEBS Lett. 580, 3589–3594 (2006).

  134. 134

    Nomura, A., Uyeda, T. Q., Yumoto, N. & Tatsu, Y. Photo-control of kinesin-microtubule motility using caged peptides derived from the kinesin C-terminus domain. Chem. Comm. 1, 3588–3590 (2006).

  135. 135

    Ionov, L., Stamm, M. & Diez, S. Reversible switching of microtubule motility using thermoresponsive polymer surfaces. Nano Lett. 6, 1982–1987 (2006).

  136. 136

    van den Heuvel, M. G. L. & Dekker, C. Motor proteins at work for nanotechnology. Science 317, 333–336 (2007).

  137. 137

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

  138. 138

    Hess, H. et al. Ratchet patterns sort molecular shuttles. Appl. Phys. A 75, 309–313 (2002).

Download references

Acknowledgements

We thank Sheila Luna, Christian Brunner and Jennifer Wilson for the artwork, and all of our collaborators who contributed thoughts and experiments. At the same time, we apologize to all authors whose work we could not cite owing to space limitations.

Author information

Correspondence to Anita Goel or Viola Vogel.

Rights and permissions

Reprints and Permissions

About this article

Further reading