Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrasonically driven nanomechanical single-electron shuttle


The single-electron transistor is the fastest and most sensitive electrometer available today1,2. Single-electron pumps and turnstiles are also being explored as part of the global effort to redefine the ampere in terms of the fundamental physical constants3,4,5,6. However, the possibility of electrons tunnelling coherently through these devices, a phenomenon known as co-tunnelling7, imposes a fundamental limit on device performance. It has been predicted8 that it should be possible to completely suppress co-tunnelling in mechanical versions of the single-electron transistor9, which would allow mechanical devices to outperform conventional single-electron transistors in many applications. However, the mechanical devices developed so far are fundamentally limited by unwanted interactions with the electrical mechanisms that are used to excite the devices10,11,12. Here we show that it is possible to overcome this problem by using ultrasonic waves rather than electrical currents as the excitation mechanism, which we demonstrate at low temperatures. This is a significant step towards the development of high-performance devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The MSET devices.
Figure 2: The Faraday cage and piezo actuation system.
Figure 3: MSET resonances.
Figure 4: Measurement, model and simulation of the MSET.
Figure 5: Finite element calculation.


  1. 1

    Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Devoret, M. H. & Schoelkopf, R. J. Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Keller, M. W., Martinis, J. M., Zimmermann, N. M. & Steinbach, A. H. Accuracy of electron counting using 7-junction electron pump. Appl. Phys. Lett. 69, 1804–1806 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Ono, Y., Zimmermann, N. M., Yamazaki, K. & Takahashi, Y. Turnstile operation using a silicon dual-gate single-electron transitor. Jpn J. Appl. Phys. 42, L1109–L1111 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Geerligs, L. J. et al. Frequency-locked turnstile device for single electrons. Phys. Rev. Lett. 64, 2691–2694 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Fonseca, L. R. C., Korotkov, A. N. & Likharev, K. K. A numerical study of the accuracy of single-electron current standards. J. Appl. Phys. 79, 9155–9165 (1996).

    CAS  Article  Google Scholar 

  7. 7

    De Franceschi, S. et al. Electron cotunnelling in a semiconductor quantum dot. Phys. Rev. Lett. 86, 878–881 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Weiss, C. & Zwerger, W. Accuracy of a mechanical single-electron shuttle. Europhys. Lett. 47, 97–103 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Gorelik, L. Y. et al. Shuttle mechanism for charge transfer in coulomb blockade nanostructures. Phys. Rev. Lett. 80, 4526–4529 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Erbe, A., Blick, R. H., Tilke, A., Kriele, A. & Kotthaus, J. P. A mechanically flexible tunneling contact operating at radio frequencies. Appl. Phys. Lett. 73, 3751–3753 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Erbe, A., Weiss, C., Zwerger, W. & Blick, R. H. Nanomechanical resonator shuttling single electrons at radio frequencies. Phys. Rev. Lett. 87, 096106 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Scheible, D. V. & Blick., R. H. Silicon nanopillars for mechanical single-electron transport. Appl. Phys. Lett. 84, 4632–4634 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G. High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, 124304 (2006).

    Article  Google Scholar 

  14. 14

    Jänchen, G. et al. Mechanical properties of high-aspect-ratio atomic-force microscope tips. Appl. Phys. Lett. 80, 4623–4625 (2002).

    Article  Google Scholar 

  15. 15

    Shaw, S. W. The dynamics of a harmonically excited system having rigid amplitude constraints. J. Appl. Mech. 52, 453–464 (1985).

    Article  Google Scholar 

  16. 16

    Isacsson, A. Dynamics of a three-terminal mechanically flexible tunnelling contact. Phys. Rev. B 64, 035326 (2001).

    Article  Google Scholar 

  17. 17

    Devoret, M. H. & Grabert, H. in Single Charge Tunneling (eds Grabert, H. & Devoret, M. H.) (Plenum, New York, 1992).

  18. 18

    Sze, S. M. in Physics of Semiconductor Devices (ed. Sze, S. M.) (John Wiley & Sons, New York, 1981).

  19. 19

    Azuma, Y. et al. One by one single-electron transport in nanomechanical Coulomb blockade shuttle. Appl. Phys. Lett. 91, 053120 (2007).

    Article  Google Scholar 

Download references


We gratefully acknowledge financial support of the German Excellence Initiative via the Nanosystems Initiative Munich (NIM) and by the Deutsche Forschungsgemeinschaft (Ko 416/18-1). We thank K. Karrai for helpful discussion and S. Manus for expert technical help. D.R.K. thankfully acknowledges support by the Studienstiftung des deutschen Volkes.

Author information




D.R.K. conceived and designed the experiment, analysed the data and wrote the paper. E.M.W. and J.P.K. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Daniel R. Koenig.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koenig, D., Weig, E. & Kotthaus, J. Ultrasonically driven nanomechanical single-electron shuttle. Nature Nanotech 3, 482–485 (2008).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research