Article | Published:

Memristive switching mechanism for metal/oxide/metal nanodevices

Nature Nanotechnology volume 3, pages 429433 (2008) | Download Citation

Subjects

Abstract

Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the ‘memristor’ (memory-resistor) was first developed from fundamental symmetry arguments in 1971, and we recently showed that memristor behaviour can naturally explain such coupled electron–ion dynamics. Here we provide experimental evidence to support this general model of memristive electrical switching in oxide systems. We have built micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching. We demonstrate that switching involves changes to the electronic barrier at the Pt/TiO2 interface due to the drift of positively charged oxygen vacancies under an applied electric field. Vacancy drift towards the interface creates conducting channels that shunt, or short-circuit, the electronic barrier to switch ON. The drift of vacancies away from the interface annilihilates such channels, recovering the electronic barrier to switch OFF. Using this model we have built TiO2 crosspoints with engineered oxygen vacancy profiles that predictively control the switching polarity and conductance.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Technology and metrology of new electronic materials and devices. Nature Nanotech. 2, 25–32 (2007).

  2. 2.

    et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nature Mater. 5, 312–320 (2006).

  3. 3.

    et al. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

  4. 4.

    Cramming more components onto integrated circuits. Electronics 38, 114–116 (1965).

  5. 5.

    Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA, 1989).

  6. 6.

    Neuromorphic microchips. Sci. Am. 292, 56–63 (2005).

  7. 7.

    & Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

  8. 8.

    et al. Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78, 3738–3740 (2001).

  9. 9.

    Avalanche-induced negative resistance in thin oxide films. J. Appl. Phys. 36, 184–187 (1965).

  10. 10.

    & New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. Lond. A 301, 77–102 (1967).

  11. 11.

    , & Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92, 178302 (2004).

  12. 12.

    , , & Spatially extended nature of resistive switching in perovskite oxide thin films. Appl. Phys. Lett. 89, 063507 (2006).

  13. 13.

    , & Giant resistance switching in metal–insulator–manganite junctions: evidence for Mott transition. Phys. Rev. B 71, 045305 (2005).

  14. 14.

    et al. Identification of a determining parameter for resistive switching of TiO2 thin films. Appl. Phys. Lett. 86, 262907 (2005).

  15. 15.

    & Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).

  16. 16.

    , , , & Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007).

  17. 17.

    , , , & First-principles modeling of resistance switching in perovskite oxide material. Appl. Phys. Lett. 89, 042904 (2006).

  18. 18.

    et al. Field-programmable rectification in rutile TiO2 crystals. Appl. Phys. Lett. 91, 112101 (2007).

  19. 19.

    , , & Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073–4075 (2004).

  20. 20.

    , , & Mechanism and scalability in resistive switching of metal-Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 89, 123502 (2006).

  21. 21.

    et al. Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 83, 957–959 (2003).

  22. 22.

    , , , & Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films. Appl. Phys. Lett. 91, 012907 (2007).

  23. 23.

    , & Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 012107 (2005).

  24. 24.

    et al. Bipolar resistive switching in polycrystalline TiO2 films. Appl. Phys. Lett. 90, 113501 (2007).

  25. 25.

    et al. Resistance switching of copper doped MoOx films for nonvolatile memory applications. Appl. Phys. Lett. 90, 122104 (2007).

  26. 26.

    et al. Fabrication of a 34 × 34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography. Nano Lett. 4, 1225–1229 (2004).

  27. 27.

    et al. Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. Nano Lett. 6, 351–354 (2006).

  28. 28.

    , & Microscopic nature of the metal to insulator phase transition induced through electroreduction in single-crystal KNbO3. Appl. Phys. Lett. 60, 1190–1192 (1992).

  29. 29.

    & Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J. Appl. Phys. 85, 897–902 (1999).

  30. 30.

    & Metal–Semiconductor Contacts, 2nd edn (Oxford Science Publications, Oxford 1988).

  31. 31.

    , & Electrical properties and defect chemistry of anatase (TiO2). Solid State Ionics 177, 229–236 (2006).

  32. 32.

    et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005).

  33. 33.

    Memristor — missing circuit element. IEEE Trans. Circuit Theory CT-18, 507–519 (1971).

  34. 34.

    , , & The missing memristor found. Nature 453, 80–83 (2008).

  35. 35.

    & Parallel silicide contacts. J. Appl. Phys. 51, 3735–3739 (1980).

  36. 36.

    Electron transport at metal–semiconductor interfaces: General theory. Phys. Rev. B 45, 13509–13523 (1992).

  37. 37.

    , , , & Nanometer-resolved spatial variations in the Schottky barrier height of a Au/n-type GaAs diode. Phys. Rev. B 49, 16474–16479 (1994).

Download references

Acknowledgements

The authors are grateful to HP colleagues W. Tong, J. Borghetti, Feng Miao and Zhiyong Li for valuable assistance with experiments, and D. Strukov and P. Kuekes for insightful discussions about the TiO2 switching mechanisms. This research was supported in part by Intelligence Advanced Research Projects Activity.

Author information

Affiliations

  1. Hewlett-Packard Laboratories, Palo Alto, California 94304, USA

    • J. Joshua Yang
    • , Matthew D. Pickett
    • , Xuema Li
    • , Douglas A. A. Ohlberg
    • , Duncan R. Stewart
    •  & R. Stanley Williams

Authors

  1. Search for J. Joshua Yang in:

  2. Search for Matthew D. Pickett in:

  3. Search for Xuema Li in:

  4. Search for Douglas A. A. Ohlberg in:

  5. Search for Duncan R. Stewart in:

  6. Search for R. Stanley Williams in:

Contributions

J.Y. and D.S. conceived and designed the experiments. J.Y. performed the experiments. J.Y., M.P., D.S. and R.W. analysed the data. D.O. and X.L. contributed materials/analysis tools. J.Y., D.S. and R.W. co-wrote the paper.

Corresponding author

Correspondence to Duncan R. Stewart.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2008.160