Review Article | Published:

Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology

Nature Nanotechnology volume 3, pages 261269 (2008) | Download Citation

Subjects

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Nanobiotechnology: Concepts, Applications and Perspectives (Wiley-VCH, Weinheim, 2004).

  2. 2.

    Nanobiotechnology: Report of the National Nanotechnology Initiative Workshop, October 2003; available at .

  3. 3.

    , , , & Recent progress on nanovehicles. Chem. Soc. Rev. 35, 1043–1055 (2006).

  4. 4.

    , & Molecular devices and machines. Nano Today 2, 18–25 (April 2007).

  5. 5.

    & Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

  6. 6.

    , , , & Pore-forming proteins and their application in biotechnology. Curr. Pharm. Biotechnol. 3, 99–115 (2002).

  7. 7.

    , , & A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397, 129–134 (1999).

  8. 8.

    et al. Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Lett. 3, 1651–1655 (2003).

  9. 9.

    et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

  10. 10.

    et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

  11. 11.

    , & Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

  12. 12.

    & How the doors to the nanoworld were opened. Nature Nanotech. 1, 3–5 (2006).

  13. 13.

    & Observing single biomolecules at work with the atomic force microscope. Nature Struct. Biol. 7, 715–718 (2000).

  14. 14.

    Using nanotechniques to explore microbial surfaces. Nature Rev. Microbiol. 2, 451–60 (2004).

  15. 15.

    et al. Single-molecule studies of membrane proteins. Curr. Opin. Struct. Biol. 16, 489–495 (2006).

  16. 16.

    , , & The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J. Mol. Biol. 370, 246–255 (2007).

  17. 17.

    , , , & Proton powered turbine of a plant motor. Nature 405, 418–419 (2000).

  18. 18.

    et al. The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep. 6, 1040–1044 (2005).

  19. 19.

    , , & Conformational changes in surface structures of isolated Connexin26 gap junctions. EMBO J. 21, 3598–3607 (2002).

  20. 20.

    et al. Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature 421, 127–128 (2003).

  21. 21.

    , , & Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry 43, 15643–15656 (2004).

  22. 22.

    & Chromatic adaptation of photosynthetic membranes. Science 309, 484–487 (2005).

  23. 23.

    et al. Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol. 17, 1765–1770 (2007).

  24. 24.

    et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–1588 (1989).

  25. 25.

    et al. Escherichia coli RNA ploymerase activity observed using atomic force microscopy. Biochemistry 36, 461–468 (1997).

  26. 26.

    , & Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys. J. 74, 2398–2404 (1998).

  27. 27.

    et al. Probing proteinprotein interactions in real time. Nature Struct. Biol. 7, 644–647 (2000).

  28. 28.

    et al. Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO J. 25, 4567–4576 (2006).

  29. 29.

    , , , & Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J. Biol. Chem. 282, 8895–8904 (2007).

  30. 30.

    et al. Atomic force bio-analytics. Curr. Opin. Chem. Biol. 7, 641–647 (2003).

  31. 31.

    et al. Imaging the electrostatic potential of transmembrane channels: Atomic probe microscopy on OmpF porin. Biophys. J. 82, 1667–1676 (2002).

  32. 32.

    et al. Assessment of insulated conductive cantilevers for biology and electrochemistry. Nanotechnology 16, 997–1005 (2005).

  33. 33.

    , & Intermolecular forces and energies between ligands and receptors. Science 266, 257–259 (1994).

  34. 34.

    , & Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).

  35. 35.

    , , , & Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

  36. 36.

    et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5, e268 (2007).

  37. 37.

    , & Navigating the folding routes. Science 267, 1619–1620 (1995).

  38. 38.

    et al. Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nature Struct. Biol. 10, 731–737 (2003).

  39. 39.

    et al. The mechanical stability of ubiquitin is linkage dependent. Nature Struct. Biol. 10, 738–743 (2003).

  40. 40.

    , , & Anisotropic deformation response of single protein molecules. Proc. Natl Acad. Sci. USA 103, 12724–12728 (2006).

  41. 41.

    et al. Nanospring behaviour of ankyrin repeats. Nature 440, 246–249 (2006).

  42. 42.

    , , & The myosin coiled-coil is a truly elastic protein structure. Nature Mater. 1, 232–235 (2002).

  43. 43.

    et al. Molecular nanosprings in spider capture-silk threads. Nature Mater. 2, 278–283 (2003).

  44. 44.

    & Polyprotein of GB1 is an ideal artificial elastomeric protein. Nature Mater. 6, 109–114 (2007).

  45. 45.

    Probing the relation between forcelifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

  46. 46.

    , , & Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl Acad. Sci. USA 98, 468–472 (2001).

  47. 47.

    & Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004).

  48. 48.

    Protein folding and misfolding. Nature 426, 884–890 (2003).

  49. 49.

    , , & Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 36, 233–260 (2007).

  50. 50.

    , , & From valleys to ridges: Exploring the dynamic energy landscape of single membrane proteins. Chem. Phys. Chem. (in the press); doi:10.1002/cphc.200700662.

  51. 51.

    , , , & Locating ligand binding and activation of a single antiporter. EMBO Rep. 6, 668–674 (2005).

  52. 52.

    , & Differentiating ligand and inhibitor interactions of a single antiporter. J. Mol. Biol. 362, 925–932 (2006).

  53. 53.

    , , , & Examining the dynamic energy landscape of an antiporter upon inhibitor binding. J. Mol. Biol. 375, 1258–1266 (2008).

  54. 54.

    , & Vertebrate membrane proteins: Structure, function and insights from biophysical approaches. Pharmacol. Rev. 60, 4378 (2008).

  55. 55.

    , , , & Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys. J. 81, 2344–2356 (2001).

  56. 56.

    , , & Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biol. 2, 313–317 (2000).

  57. 57.

    et al. Tensile forces govern germ layer organization during gastrulation. Nature Cell Biol. 10, 429–436 (2008).

  58. 58.

    et al. BCR/ABL expression of myeloid progenitors increases b1-integrin mediated adhesion to stromal cells. J. Mol. Biol. 377, 1082–1093 (2008).

  59. 59.

    , , & Force measurements of the alpha5beta1 integrin-fibronectin interaction. Biophys. J. 84, 1252–1262 (2003).

  60. 60.

    et al. Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol. Biol. Cell 18, 1634–1644 (2007).

  61. 61.

    , , , & Native protein nanolithography that can write, read and erase. Nature Nanotech. 2, 220–225 (2007).

  62. 62.

    , & Applications of dip-pen nanolithography. Nature Nanotech. 2, 145–155 (2007).

  63. 63.

    , , , & Single molecule cut and paste. Science 319, 594–596 (2008).

  64. 64.

    , , , & Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4, 106–113 (1993).

  65. 65.

    & Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys. J. 78, 520–535 (2000).

  66. 66.

    , & Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl Acad. Sci. USA 96, 921–926 (1999).

  67. 67.

    , , , & Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567 (1996).

  68. 68.

    , & Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature Cell Biol. 3, 607–610 (2001).

  69. 69.

    , , & Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780–783 (2007).

  70. 70.

    , , & Probing the surface of living diatoms with atomic force microscopy: The nanostructure and nanomechanical properties of the mucilage layer. J. Phycol. 39, 722–734 (2003).

  71. 71.

    , , , & Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes Env. Microbiol. 10, 1344–1356 (2008).

  72. 72.

    , & Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 4539–4543 (2003).

  73. 73.

    Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007).

  74. 74.

    , , , & Functional-group imaging by chemical force microscopy. Science 265, 2071–2074 (1994).

  75. 75.

    Chemical force microscopy of chemical and biological interactions. Surf. Interf. Anal. 38, 1429–1441 (2006).

  76. 76.

    et al. Chemical force microscopy of single live cells. Nano Lett. 7, 3026–3030 (2007).

  77. 77.

    , , & High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys. J. 94, 656–660 (2008).

  78. 78.

    , , , & Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23, 11977–11979 (2007).

  79. 79.

    et al. Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch. Eur. J. Physiol. 456, 117–125 (2008).

  80. 80.

    & Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

  81. 81.

    , , , & Detection and localization of individual antibody–antigen recognition events by atomic force microscopy. Proc. Natl Acad. Sci. USA 93, 3477–3481 (1996).

  82. 82.

    , & Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773 (1994).

  83. 83.

    , , & Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl Acad. Sci. USA 95, 12283–12288 (1998).

  84. 84.

    , & Atomic force microscope imaging contrast based on molecular recognition. Biophys. J. 72, 445–448 (1997).

  85. 85.

    et al. Antibody recognition imaging by force microscopy. Nature Biotechnol. 17, 902–905 (1999).

  86. 86.

    , , , & Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys. J. 93, L11–L13 (2007).

  87. 87.

    , & Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc. Natl Acad. Sci. USA 104, 9609–9614 (2007).

  88. 88.

    et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Meth. 2, 515–520 (2005).

  89. 89.

    et al. Single-molecule force spectroscopy and imaging of the Vancomycin/D-Ala-D-Ala interaction. Nano Lett. 7, 796–801 (2007).

  90. 90.

    , , & Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology 13, R29–R36 (2002).

  91. 91.

    et al. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron. 21, 849–856 (2005).

  92. 92.

    et al. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microsc. Microanal. 13, 13–17 (2007).

  93. 93.

    et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

  94. 94.

    et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA 99, 9783–9788 (2002).

  95. 95.

    et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

  96. 96.

    et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol. 19, 856–860 (2001).

  97. 97.

    et al. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14, 86–90 (2003).

  98. 98.

    , , , & Label free analysis of transcription factors using microcantilever arrays. Biosens. Bioelectron. 21, 1599–1605 (2006).

  99. 99.

    et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotech. 1, 214–220 (2006).

  100. 100.

    et al. Analyzing gene expression using combined nanomechanical cantilever sensors. J. Phys.: Conf. Ser. 61, 450–453 (2007).

  101. 101.

    , , , , & A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

  102. 102.

    , & Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second. Appl. Phys. Lett. 83, 6–8 (2003).

  103. 103.

    et al. Nanoscale resolution in GFP-based microscopy. Nature Meth. 3, 721–723 (2006).

Download references

Acknowledgements

We acknowledge support from the National Foundation for Scientific Research (FNRS), the Région wallonne, the Université catholique de Louvain (Fonds Spéciaux de Recherche), the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme), the Research Department of Communauté Française de Belgique (Concerted Research Action), the Deutsche Forschungsgemeinschaft (DFG), the European Union and the Free State of Saxony. Y.F.D. is a Research Associate of the FNRS.

Author information

Affiliations

  1. Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, D-01307 Dresden, Germany

    • Daniel J. Müller
  2. Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium

    • Yves F. Dufrêne

Authors

  1. Search for Daniel J. Müller in:

  2. Search for Yves F. Dufrêne in:

Corresponding authors

Correspondence to Daniel J. Müller or Yves F. Dufrêne.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nnano.2008.100

Further reading