Carrier-mediated magnetoelectricity in complex oxide heterostructures

Article metrics


Increasing demands for high-density, stable nanoscale memory elements, as well as fundamental discoveries in the field of spintronics, have led to renewed interest in exploring the coupling between magnetism and electric fields. Although conventional magnetoelectric routes often result in weak responses, there is considerable current research activity focused on identifying new mechanisms for magnetoelectric coupling. Here we demonstrate a linear magnetoelectric effect that arises from a carrier-mediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using first-principles density functional calculations, we illustrate this effect at the SrRuO3/SrTiO3 interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behaviour, the interface displays a spatial coexistence of magnetism and dielectric polarization, suggesting a route to a new type of interfacial multiferroic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Calculated magnetization induced by an external voltage.
Figure 2: Schematic of the carrier-mediated magnetoelectricity mechanism.


  1. 1

    O'Dell, T. The Electrodynamics of Magneto-Electric Media (North-Holland, Amsterdam, 1970).

  2. 2

    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R1–R30 (2005).

  3. 3

    Dzyaloshinskii, I. On the magneto-electric effect in antiferromagnets. Soviet Phys. J. Expt. Theor. Phys. 10, 628629 (1960).

  4. 4

    Astrov, D. The magnetoelectric effect in antiferromagnetics. Soviet Phys. J. Expt. Theor. Phys. 11, 708709 (1960).

  5. 5

    Binek, C. & Doudin, B. Magnetoelectronics with magnetoelectrics. J. Phys.: Condens. Matter 17, L39–L44 (2005).

  6. 6

    Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

  7. 7

    Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).

  8. 8

    Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

  9. 9

    Srinivasan, G. et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001).

  10. 10

    Zheng, H. et al. Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004).

  11. 11

    Borisov, P., Hochstrat, A., Chen, X. & Kleemann, W. Multiferroically composed exchange bias systems. Phase Transitions 79, 1123–1133 (2006).

  12. 12

    Dong, S., Cheng, J., Li, J. F. & Viehland, D. Enhanced magnetoelectric effects in laminate composites of terfenol-D/Pb(Zr,Ti)O3 under resonant drive. Appl. Phys. Lett. 83, 4812–4814 (2003).

  13. 13

    Zhao, T. et al. Electrically controllable antiferromagnets: Nanoscale observation of coupling between antiferromagnetism and ferroelectricity in multiferroic BiFeO3 . Nature Mater. 5, 823–829 (2006).

  14. 14

    Ohno, H. et al. Electric-field control of magnetism. Nature 408, 944–946 (2000).

  15. 15

    Tanaka, H., Zhang, J. & Kawai, T. Giant electric field modulation of double exchange ferromagnetism at room temperature in the perovskite manganite/titanate pn junction. Phys. Rev. Lett. 88, 027204 (2002).

  16. 16

    Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, Y. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

  17. 17

    Yamada, H. et al. Engineered interface of magnetic oxides. Science 305, 646–648 (2004).

  18. 18

    Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

  19. 19

    Stengel, M. & Spaldin, N. A. Ab-initio theory of metal–insulator interfaces in a finite electric field. Phys. Rev. B 75, 205121 (2007).

  20. 20

    Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

  21. 21

    Velev, J. P. et al. Negative spin polarization and large tunneling magnetoresistance in epitaxial Co–SrTiO3–Co magnetic tunnel junctions. Phys. Rev. Lett. 95, 216601 (2005).

  22. 22

    Marrec, F. L. et al. Magnetic behavior of epitaxial SrRuO3 thin films under pressure up to 23 GPa. Appl. Phys. Lett. 80, 2338–2340 (2002).

  23. 23

    Ahn, C. H. et al. Ferroelectric field effect in ultrathin SrRuO3 films. Appl. Phys. Lett. 70, 206–208 (1997).

  24. 24

    Takahashi, K. S. et al. Local switching of two-dimensional superconductivity using the ferroelectric field effect. Nature 441, 195–198 (2006).

  25. 25

    Gallagher, W. J. & Parkin, S. S. P. Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip. IBM J. Res. Dev. 50, 5–23 (2006).

  26. 26

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

  27. 27

    Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

  28. 28

    Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

  29. 29

    VandeVondele, J. & De Vita, A. First-principles molecular dynamics of metallic systems. Phys. Rev. B 60, 13241–13244 (1999).

  30. 30

    Stengel, M. & De Vita, A. First-principles molecular dynamics of metals: A Lagrangian formulation. Phys. Rev. B 62, 15283–15286 (2000).

  31. 31

    Antons, A., Neaton, J. B., Rabe, K. M. & Vanderbilt, D. Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles. Phys. Rev. B 71, 024102 (2005).

  32. 32

    Allen, P. B. et al. Transport properties, thermodynamic properties, and electronic structure of SrRuO3 . Phys. Rev. B 53, 4393–4398 (1996).

  33. 33

    Singh, D. J. Electronic and magnetic properties of the 4d itinerant magnet SrRuO3 . J. Appl. Phys. 79, 4818–4820 (1996).

  34. 34

    Mazin, I. I. & Singh, D. J. Electronic structure and magnetism in Ru-based perovskites. Phys. Rev. B 56, 2556–2571 (1997).

  35. 35

    Baroni, S., de Gironcoli, S. & Corso, A. D. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

  36. 36

    Fennie, C. J. & Rabe, K. M. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006).

  37. 37

    Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

  38. 38

    Pickett, W. E. Spin-density-functional-based search for half-metallic antiferromagnets. Phys. Rev. B 57, 10613–10619 (1998).

  39. 39

    Chaudhuri, A. R., Ranjith, R., Krupanidhi, S. B., Mangalam, R. V. K. & Sundaresan, A. Interface dominated biferroic La0.6Sr0.4MnO3/0.7Pb(Mg1/3 Nb2/3)O3–0.3PbTiO3 epitaxial superlattices. Appl. Phys. Lett. 90, 122902 (2007).

  40. 40

    Giustino, F. & Pasquarello, A. Theory of atomic-scale dielectric permittivity at insulator interfaces. Phys. Rev. B 71, 144104 (2005).

Download references


This work was supported by the Department of Energy SciDac program on Quantum Simulations of Materials and Nanostructures, grant number DE-FC02-06ER25794 (M.S.), and by the National Science Foundation Nanoscale Interdisciplinary Research Team programme, grant number 0609377 (J.M.R). N.A.S. thanks the Miller Institute at UC Berkeley for their support through a Miller Research Professorship.

Author information

All authors conceived and designed the calculations. Formal extensions to density functional theory to include finite electric field calculations ab initio were implemented by M.S., and the calculations were performed by J.M.R. All authors contributed to writing the manuscript.

Correspondence to Nicola A. Spaldin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rondinelli, J., Stengel, M. & Spaldin, N. Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nature Nanotech 3, 46–50 (2008) doi:10.1038/nnano.2007.412

Download citation

Further reading