Local ionic and electron heating in single-molecule junctions


A basic aim in molecular electronics is to understand transport through a single molecule connected to two electrodes. Substantial progress towards this goal has been made over the past decade as a result of advances in both experimental techniques and theoretical methods1,2,3. Nonetheless, a fundamental and technologically important issue, current-induced local heating of molecules4,5,6,7,8, has received much less attention. Here, we report on a combined experimental and theoretical study of local heating in single molecules (6-, 8- and 10-alkanedithiol) covalently attached to two gold electrodes as a function of applied bias and molecular length. We find that the effective local temperature of the molecular junction first increases with applied bias, and then decreases after reaching a maximum. At fixed bias, the effective temperature decreases with increasing molecular length. These experimental findings are in agreement with hydrodynamic predictions, which include both electron–phonon and electron–electron interactions7,9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Measurements of conductance and stretching distance of single n-alkanedithiol junctions.
Figure 2: Measurements of stretching distance and effective temperature of single n-alkanedithiol junctions (n = 6, 8, 10) at small voltage bias.
Figure 3: Measurements of stretching distance and effective temperature of single n-alkanedithiol (n = 6, 8, 10) junctions with increasing voltage bias.


  1. 1

    Lindsay, S. M. & Ratner, M. A. Molecular transport junctions: Clearing mists. Adv. Mater. 19, 23–31 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Tao, N. J. Electron transport in molecular junctions. Nature Nanotechnol. 1, 173–181 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Selzer, Y. & Allara, D. L. Single-molecule electrical junctions. Annu. Rev. Phys. Chem. 57, 593–623 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Todorov, T. N. Local heating in ballistic atomic-scale contacts. Phil. Mag. B 77, 965–973 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Segal, D. & Nitzan, A. Heating in current carrying molecular junctions. J. Chem. Phys. 117, 3915–3927 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Chen, Y. C., Zwolak, M. & Di Ventra, M. Local heating in nanoscale conductors. Nano Lett. 3, 1691–1694 (2003).

    CAS  Article  Google Scholar 

  7. 7

    D'Agosta, R., Sai, N. & Di Ventra, M. Local electron heating in nanoscale conductors. Nano Lett. 6, 2935–2938 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Huang, Z. F., Xu, B. Q., Chen, Y. C., Di Ventra, M. & Tao, N. J. Measurement of current-induced local heating in a single molecule junction. Nano Lett. 6, 1240–1244 (2006).

    CAS  Article  Google Scholar 

  9. 9

    D'Agosta, R. & Di Ventra, M. Hydrodynamic approach to transport and turbulence in nanoscale conductors. J. Phys. Condens. Matter. 18, 11059–11065 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Bechtold, T., Rudnyi, E. B. & Korvink, J. G. Dynamic electro-thermal simulation of microsystems—a review. J. Micromech. Microeng. 15, R17–R31 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Solomon, G. C. et al. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. J. Chem. Phys. 124, 094704 (2006).

    Article  Google Scholar 

  12. 12

    Wang, W. Y., Lee, T., Kretzschmar, I. & Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Kushmerick, J. G. et al. Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Kaun, C. C. & Seideman, T. Current-driven oscillations and time-dependent transport in nanojunctions. Phys. Rev. Lett. 94, 226801 (2005).

    Article  Google Scholar 

  15. 15

    Kaun, C. C., Jorn, R. & Seideman, T. Spontaneous oscillation of current in fullerene molecular junctions. Phys. Rev. B 74, 045415 (2006).

    Article  Google Scholar 

  16. 16

    Di Ventra, M., Pantelides, S.T. & Lang, N. D. Current-induced forces in molecular wires. Phys. Rev. Lett. 88, 046801 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Xu, B. Q., Xiao, X. Y. & Tao, N. J. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Evans, E. Probing the relation between force, lifetime and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Tsutsui, M., Kurokawa, S. & Sakai, A. Bias-induced local heating in atom-sized metal contacts at 77 K. Appl. Phys. Lett. 90, 133121 (2007).

    Article  Google Scholar 

  20. 20

    Li, X. et al. Conductance of single alkanedithiols: Conduction mechanism and effect of molecule–electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Xu, B. Q. & Tao, N. J. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Xiao, X. Y., Nagahara, L. A., Rawlett, A. M. & Tao, N. J. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 127, 9235–9240 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Evans, E. Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discussions 111, 1–16 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Rubio-Bollinger, G., Bahn, S. R., Agrait, N., Jacobsen, K. W. & Vieira, S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001).

    Article  Google Scholar 

Download references


We thank the US National Science Foundation (ECS0304682, Z.F.H.), the US Department of Energy (DE-FG03-01ER45943, F.C. and Z.F.H.) and (DE-FG02-05ER46204, R.D.) for financial support.

Author information




Z.F.H. carried out the experiment and data analysis, F.C. assisted in the experiment, R.D. and M.D.V. worked out the theory and predicted local cooling, P.B. provided important comments and N.J.T. conceived the experiment.

Corresponding authors

Correspondence to Massimiliano Di Ventra or Nongjian Tao.

Supplementary information

Supplementary Information

Supplementary figures S1-S3 (PDF 934 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, Z., Chen, F., D'agosta, R. et al. Local ionic and electron heating in single-molecule junctions. Nature Nanotech 2, 698–703 (2007). https://doi.org/10.1038/nnano.2007.345

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research