Carbon-based electronics

Article metrics

Abstract

The semiconductor industry has been able to improve the performance of electronic systems for more than four decades by making ever-smaller devices. However, this approach will soon encounter both scientific and technical limits, which is why the industry is exploring a number of alternative device technologies. Here we review the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons. Field-effect transistors based on semiconductor nanotubes and graphene nanoribbons have already been demonstrated, and metallic nanotubes could be used as high-performance interconnects. Moreover, owing to the excellent optical properties of nanotubes it could be possible to make both electronic and optoelectronic devices from the same material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The structure of graphene and carbon nanotubes.
Figure 2: Inelastic scattering in carbon nanotubes.
Figure 3: Designs of carbon nanotube field-effect transistors.
Figure 4: Performance characteristics for a single nanotube transistor.
Figure 5: Ring-oscillator circuit based on a single nanotube.
Figure 6: Graphene nanoribbon transistors.
Figure 7: Light emission from a nanotube.
Figure 8: Photoconductivity with a nanotube.

References

  1. 1

    Avouris, P. Electronics with carbon nanotubes. Phys. World 20, 40–45 (March 2007).

  2. 2

    Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

  3. 3

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  4. 4

    Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

  5. 5

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

  6. 6

    Zhang, Y., Tan, Y. -W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

  7. 7

    Novoselov, K. S. et al. Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007).

  8. 8

    Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (eds.) Physical properties of carbon nanotubes. (Imperial College Press, London, 1998)

  9. 9

    Anantram, M. P. & Leonard, F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69, 507–561 (2006).

  10. 10

    Charlier, J. -C., Blase, X., & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–733 (2007).

  11. 11

    Chen, Z., Lin, Y.-M., Rooks, M. J., & Avouris, P. Graphene nano-ribbon electronics. Preprint at <http://arxiv.org/abs/cond-mat/0701599> (2007).

  12. 12

    Han, M. Y., Őzyilmaz, B., Zhang, Y., & Kim, P. Energy band gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

  13. 13

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

  14. 14

    Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

  15. 15

    Son, Y.-W., Cohen, M. L., & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

  16. 16

    Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

  17. 17

    White, C. T., Li, J., Gunlycke, D. & Mintmire, J. W. Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips. Nano Lett. 7, 825–830 (2007).

  18. 18

    Avouris, P. et al. Carbon nanotube optoelectronics. Physica Status Solidi B 243, 3197–3203 (2006).

  19. 19

    Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 32, 306 (1988).

  20. 20

    Büttiker, M. Symmetry of electrical conduction. IBM J. Res. Dev. 32, 317 (1988).

  21. 21

    Ilani, S., Donev, L. A. K., Kindermann, M. & McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nature Phys. 2, 687–691 (2006).

  22. 22

    Burke, P. An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol. 2, 55–58 (2003).

  23. 23

    Ando, T. & Nakanishi, T. Impurity scattering in carbon nanotubes — absence of backscattering. J. Phys. Soc. Jpn. 67, 1104–1113 (1998).

  24. 24

    White, C. T. & Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998).

  25. 25

    Klein, O. An introduction to Kaluza-Klein theories. Z. Phys. 37, 895 (1926).

  26. 26

    Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

  27. 27

    Perebeinos, V., Tersoff, J. & Avouris, P. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 086802 (2005).

  28. 28

    Zhou, X., Park, J -Y, Huang, S., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

  29. 29

    Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders, 1976).

  30. 30

    Durkop, T., Getty, S. A., Cobas, E., & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

  31. 31

    Perebeinos, V., Tersoff, J. & Avouris, P. Mobility in semiconducting carbon nanotubes at finite carrier density. Nano Lett. 6, 205–208 (2006).

  32. 32

    Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

  33. 33

    Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

  34. 34

    Park, J. Y. et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004).

  35. 35

    Chen, Y. -F. & Fuhrer, M. S. Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 236803 (2005).

  36. 36

    Pennington, G. & Goldsman, N. Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys. Rev. B 68, 045426 (2003).

  37. 37

    Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

  38. 38

    Perebeinos, V. & Avouris, P. Impact excitation by hot carriers in carbon nanotubes. Phys. Rev. B 74, 121410R (2006).

  39. 39

    Ando, T. J. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

  40. 40

    Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004).

  41. 41

    Perebeinos, V., Tersoff, J. & Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).

  42. 42

    Pop, E. et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005).

  43. 43

    Lazzeri, M., Pisanec, S., Mauri, F., Ferrari, A. C. & Robertson J. Electron transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 95, 236802 (2005).

  44. 44

    Collins, P. G., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

  45. 45

    Collins, P. G. Hersam, M., Arnold, M., Martel, R. & Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86, 3128–3131 (2001).

  46. 46

    Naeemi, A., Sarvati, R. & Meindl, J. D. Performance comparison between carbon nanotube and copper interconnects for GSI. IEDM Digest 699–702 (2004).

  47. 47

    Tans, S. J., Verscheuren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

  48. 48

    Martel, R., Schmidt, T, Shea, H. R., Hertel, T. & Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).

  49. 49

    Sze, S. M. Physics of Semiconductor Devices. (Wiley, New York, 1981).

  50. 50

    Appenzeller, J., Knoch, J., Radosavljević, M. & Avouris, P. Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys. Rev. Lett. 92, 226802 (2004).

  51. 51

    Léonard, F. & Tersoff, J. Role of Fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84, 4693–4696 (2000).

  52. 52

    Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001).

  53. 53

    Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

  54. 54

    Appenzeller, J. et al. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89, 126801 (2002).

  55. 55

    Javey, A. et al. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

  56. 56

    Appenzeller, J., Radosavljevi, M., Knoch, J. & Avouris, P. Tunneling versus thermionic emission in one-dimensional semiconductors. Phys. Rev. Lett. 92, 048301 (2004).

  57. 57

    Chen, Z., Appenzeller, J. Knoch, J., Lin, Y-M & Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005).

  58. 58

    Radosavljevic, M., Heinze, S., Tersoff, J. & Avouris, P. Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435–2437 (2003).

  59. 59

    Avouris, P. Carbon nanotube electronics. Proc. IEEE 91, 1772–1784 (2003).

  60. 60

    Lin, Y. -M., Appenzeller, J., Knoch, J. & Avouris, P. High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4, 481–489 (2005).

  61. 61

    Chen, J., Klinke, C., Afzali, A. & Avouris, P. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 86, 123108 (2005).

  62. 62

    Klinke, C., Chen, J., Afzali, A. & Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2006).

  63. 63

    Javey, A. et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5, 345–348 (2005).

  64. 64

    Appenzeller, J., Lin, Y.-M., Knoch, J. & Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004).

  65. 65

    Javey, A. et al. High-k dielectrics for advanced carbon nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002).

  66. 66

    Javey, A. et al. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4, 1319–1322 (2004).

  67. 67

    Seidel, R. V. et al. Sub-20 nm short channel carbon nanotube transistors. Nano Lett. 5, 147–150 (2005).

  68. 68

    Solomon, P. M. in Future Trends in Microelectronics: Up the Nano Creek (eds Luryi, S., Xu, J. M., & Zaslavsky, A.) 212–223 (Wiley, New York, 2007).

  69. 69

    Castro, L. C. et al. Method for predicting fT for carbon nanotube FETs. IEEE Trans. Nanotechnol. 4, 699–704 (2005).

  70. 70

    Frank, D. J. & Appenzeller, J. High frequency response in carbon nanotube field-effect transistors. IEEE Electron. Device Lett. 25, 34–36 (2004).

  71. 71

    Li, S. D., Yu, Z., Yen, S-F, Tang, W. C. & Burke, P. J. Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 4, 753–756 (2004).

  72. 72

    Rosenblatt, S., Lin, H., Sazonova, V., Tiwari, S. & McEuen, P. L. Mixing at 50GHz using a single-walled carbon nanotube transistor. Appl. Phys. Lett. 87, 153111–15313 (2005).

  73. 73

    Bethoux, J.-M. et al. An 8-GHz ft carbon nanotube field-effect transistor for gigahertz range applications. IEEE Electron. Device Lett. 27, 681–683 (2006).

  74. 74

    Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

  75. 75

    Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001).

  76. 76

    Liu, X., Lee, C., Zhou, C. & Han, J. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79, 3329–3331 (2001).

  77. 77

    Javey, A., Wang, Q., Ural, A., Li, Y. & Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2, 929–932 (2002).

  78. 78

    Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).

  79. 79

    Katsnelson, M. I. Minimal conductivity in bilayer graphene. Eur. Phys. J. B 51, 157 (2006).

  80. 80

    Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005).

  81. 81

    Peres, N. M. R., Guines, F. & Neto, A. H. C. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).

  82. 82

    Tworzydo, J., Trauzettel, B., Titov, M., Rycerz, A. & Beenakker, C. W. J. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006).

  83. 83

    Ziegler, K. Robust transport properties in graphene. Phys. Rev. Lett. 97, 266802 (2006).

  84. 84

    Niimi, Y. et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 73, 085421 (2006).

  85. 85

    Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

  86. 86

    Freitag, M. et al. Mobile ambipolar domain in carbon-nanotube infrared emitters. Phys. Rev. Lett. 93, 076803 (2004).

  87. 87

    Freitag, M. et al. Electrically excited, localized infrared emission from single carbon nanotubes. Nano Lett. 6, 1425–1433 (2006).

  88. 88

    Freitag, M. et al. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003).

  89. 89

    Qiu, X., Freitag, M., Perebeinos, V. & Avouris, P. Photoconductivity spectra of single carbon nanotubes: Implications on the nature of their excited states. Nano Lett. 5, 749–752 (2005).

  90. 90

    Balasubramanian, K et al. Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl. Phys. Lett. 84, 2400–2402 (2004).

  91. 91

    Freitag, M. et al. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett. 7, 2037–2042 (2007).

  92. 92

    Freitag, M. et al. Scanning photovoltage microscopy of potential modulations in carbon nanotubes. Appl. Phys. Lett. 91, 031101 (2007).

  93. 93

    Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by electric field effect. Preprint at <http://arxiv.org/abs/cond-mat/0611342> (2006).

  94. 94

    Ohta, T. et al. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

  95. 95

    Williams, J. R., DiCarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p-n junction of graphene. Science 317, 638–641 (2007).

  96. 96

    Abanin, D. A. & Levitov, L. S. Quantized transport in graphene p-n junctions in a magnetic field. Science 317, 641–643 (2007).

  97. 97

    Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

  98. 98

    Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

Download references

Author information

Correspondence to Phaedon Avouris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech 2, 605–615 (2007) doi:10.1038/nnano.2007.300

Download citation

Further reading