An autonomous polymerization motor powered by DNA hybridization


We present a synthetic molecular motor capable of autonomous nanoscale transport in solution. Inspired by bacterial pathogens such as Rickettsia rickettsii, which locomote by inducing the polymerization of the protein actin at their surfaces to form ‘comet tails’1, the motor operates by polymerizing a double-helical DNA tail2. DNA strands are propelled processively at the living end of the growing polymers, demonstrating autonomous locomotion powered by the free energy of DNA hybridization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mechanism schematic for a DNA-based Rickettsia mimic.
Figure 2: Fluorescent native agarose gel scanned at two wavelengths.
Figure 3: Fluorescence capture experiment demonstrating that during polymerization, each Rickettsia strand remains on the same polymer as its original anchor strand partner.
Figure 4: Fluorescence quenching experiment demonstrating that Rickettsia strands are carried at the live end of polymers.
Figure 5: Direct visualization of Rickettsia systems by means of atomic force microscopy.


  1. 1

    Gouin, E., Welch, M. D. & Cossart, P. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35–45 (1999).

    Article  Google Scholar 

  2. 2

    Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–15278 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Bois, J. S. et al. Topological constraints in nucleic acid hybridization kinetics. Nucleic Acids Res. 33, 4090–4095 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Seelig, G., Yurke, B. & Winfree, E. Catalyzed relaxation of a metastable DNA fuel. J. Am. Chem. Soc. 128, 12211–12220 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Green, S. J., Lubrich, D. & Turberfield, A. J. DNA hairpins: fuel for autonomous DNA devices. Biophys. J. 91, 2966–2975 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Seeman, N. C. From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 30, 119–125 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Simmel, F. C. & Dittmer, W. U. DNA nanodevices. Small 1, 284–299 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Sherman, W. B. & Seeman, N. C. A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Shin, J.-S. & Pierce, N. A. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Yin, P., Yan, H., Daniell, X. G., Turberfield, A. J. & Reif, J. H. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Edn 43, 4906–4911 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Tian, Y., He, Y., Chen, Y., Yin, P. & Mao, C. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Edn 44, 2–5 (2005).

    Google Scholar 

  13. 13

    Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Edn 44, 4358–4361 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Pei, R. et al. Behavior of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc. 128, 12693–12699 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Marras, S. A. E., Kramer, F. R. & Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30, e122 (2002).

    Article  Google Scholar 

  16. 16

    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Flamm, C., Fontana, W., Hofacker, I. L. & Schuster, P. RNA folding at elementary step resolution. RNA 6, 325–338 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Dirks, R. M., Lin, M., Winfree, E. & Pierce, N. A. Paradigms for computational nucleic acid design. Nucleic Acids Res. 32, 1392–1403 (2004).

    CAS  Article  Google Scholar 

Download references


We thank J. S. Bois for helpful discussions, J. Padilla for performing the early sequence design calculations, J. N. Zadeh for the use of unpublished multi-objective sequence design software, J. M. Schaeffer for the use of unpublished multi-stranded kinetics simulation software and R. Barish and R. Hariadi for guidance on the use of DNA origamis for patterning polymerization reactions. This work was funded by NSF-CCF-CAREER-0448835, NSF-CHE-0533064 (Center for Molecular Cybernetics), NSF-CCF-0622254, NSF-DMS-0506468.

Author information



Corresponding author

Correspondence to Niles A. Pierce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods and figure S1 (PDF 567 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Venkataraman, S., Dirks, R., Rothemund, P. et al. An autonomous polymerization motor powered by DNA hybridization. Nature Nanotech 2, 490–494 (2007).

Download citation

Further reading