Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optically active single-walled carbon nanotubes

Abstract

The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications1. Since they were first prepared2,3, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures4, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral ‘gable-type’ diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chiral nano-tweezers used to separate left- and right-handed isomers of chiral SWNTs.
Figure 2: Schematic representation of the separation of left-handed (LH) and right-handed (RH) SWNTs with a chiral diporphyrin, (S)-1.
Figure 3: CD and VIS–NIR spectra of nano-tweezers ((R)- and (S)-1) and their complexes with SWNTs (SWNTs:(R)-1 and SWNTs:(S)-1) in methanol.
Figure 4: CD and UV–VIS–NIR spectra of SWNTs extracted with (R)- and (S)-1 after removal of the chiral nano-tweezers.

Similar content being viewed by others

References

  1. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  2. Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).

    Article  CAS  Google Scholar 

  3. Bethune, D. S. et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993).

    Article  CAS  Google Scholar 

  4. Dukovic, G. et al. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J. Am. Chem. Soc. 128, 9004–9005 (2006).

    Article  CAS  Google Scholar 

  5. Bachilo, S. M. et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    Article  CAS  Google Scholar 

  6. Collins, P. G., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

    Article  CAS  Google Scholar 

  7. Krupke, R., Hennrich, F., Löhneysen, H. V. & Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

    Article  CAS  Google Scholar 

  8. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  Google Scholar 

  9. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    Article  CAS  Google Scholar 

  10. Li, H. et al. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 1014–1015 (2004).

    Article  CAS  Google Scholar 

  11. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  12. Maeda, Y. et al. Dispersion and separation of small-diameter single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 12239–12242 (2006).

    Article  CAS  Google Scholar 

  13. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    Article  CAS  Google Scholar 

  14. Duesberg, G. S., Muster, J., Krstic, V., Burghard, M. & Roth, S. Chromatographic size separation of single-walled carbon nanotubes. Appl. Phys. A 67, 117–119 (1998).

    Article  CAS  Google Scholar 

  15. Chattopadhyay, D., Lastella, S., Kim, S. & Papadimitrakopoulos, F. Length separation of zwitterion-functionalized single wall carbon nanotubes by GPC. J. Am. Chem. Soc. 124, 728–729 (2002).

    Article  CAS  Google Scholar 

  16. Duesberg, G. S. et al. Chromatography of carbon nanotubes. Synth. Metals 103, 2484–2485 (1999).

    Article  CAS  Google Scholar 

  17. Farkas, E., Anderson, M. E., Chen, Z. & Rinzler, A. G. Length sorting cut single wall carbon nanotubes by high performance liquid chromatography. Chem. Phys. Lett. 363, 111–116 (2002).

    Article  CAS  Google Scholar 

  18. Heller, D. A. et al. Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004).

    Article  CAS  Google Scholar 

  19. Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

    Article  Google Scholar 

  20. Odom, T. W., Huang, J.-L., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998).

    Article  CAS  Google Scholar 

  21. Liu, Z. et al. Determination of optical isomers for left-handed or right-handed chiral double-wall carbon nanotubes. Phys. Rev. Lett. 95, 187406 (2005).

    Article  Google Scholar 

  22. Hashimoto, A. et al. Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys. Rev. Lett. 94, 045504 (2005).

    Article  Google Scholar 

  23. Meyer, R. R. et al. A composite method for the determination of the chirality of single walled carbon nanotubes. J. Microsc. 212, 152–157 (2003).

    Article  CAS  Google Scholar 

  24. Tasaki, S., Maekawa, K. & Yamabe, T. π-band contribution to the optical properties of carbon nanotubes: effects of chirality. Phys. Rev. B 57, 9301–9318 (1998).

    Article  CAS  Google Scholar 

  25. Ivchenko, E. L. & Spivak, B. Chirality effects in carbon nanotubes. Phys. Rev. B 66, 155404 (2002).

    Article  Google Scholar 

  26. Samsonidze, G. G. et al. Interband optical transitions in left- and right-handed single-walled carbon nanotubes. Phys. Rev. B 69, 205402 (2004).

    Article  Google Scholar 

  27. Sánchez-Castillo, A., Román-Velazquez, C. E. & Noguez, C. Optical circular dichroism of single-wall carbon nanotubes. Phys. Rev. B 73, 045401 (2006).

    Article  Google Scholar 

  28. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  29. Borovkov, V. V., Hembury, G. A. & Inoue, Y. Origin, control, and application of supramolecular chirogenesis in bisporphyrin-based systems. Acc. Chem. Res. 37, 449–459 (2004).

    Article  CAS  Google Scholar 

  30. Weisman, R. B. & Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon-nanotubes in aqueous suspension: an empirical Kataura plot. Nano. Lett. 3, 1235–1238 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Kawai (Nagahama Institute of Bio-Science and Technology) for allowing us to use the CD spectropolarimeter, Y. Nakata and I. Hamagami (Horiba) for taking photoluminescence spectra, T. Mori (Osaka University) for helpful suggestions for CD of SWNTs, N. Yoshimoto, T. Itabashi, S. Yamada (Hitachi) and A. Toshimitsu (Kyoto University) for their encouragement, and M. Uchida (Osaka Prefecture University) for proof-reading the manuscript. This work was financially supported by Integrative Industry-Academia Partnership including Kyoto University, NTT, Pioneer, Hitachi, Mitsubishi Chemical and Rohm.

Author information

Authors and Affiliations

Authors

Contributions

X.P., N.K. and A.O. conceived and designed the experiments. T.K. and S.A. provided suggestions on the experiments. X.P. performed most of the experiments and analyses. T. S. contributed to solubilization of SWNTs. X.P. and S.B. carried out the theoretical calculations. N.K. and A.O. co-wrote the paper.

Corresponding author

Correspondence to Naoki Komatsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods (PDF 5306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Komatsu, N., Bhattacharya, S. et al. Optically active single-walled carbon nanotubes. Nature Nanotech 2, 361–365 (2007). https://doi.org/10.1038/nnano.2007.142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing