Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin qubits with electrically gated polyoxometalate molecules

Abstract

Spin qubits offer one of the most promising routes to the implementation of quantum computers. Very recent results in semiconductor quantum dots show that electrically-controlled gating schemes are particularly well-suited for the realization of a universal set of quantum logical gates. Scalability to a larger number of qubits, however, remains an issue for such semiconductor quantum dots. In contrast, a chemical bottom-up approach allows one to produce identical units in which localized spins represent the qubits. Molecular magnetism has produced a wide range of systems with properties that can be tailored, but so far, there have been no molecules in which the spin state can be controlled by an electrical gate. Here we propose to use the polyoxometalate [PMo12O40(VO)2]q−, where two localized spins with S = 1/2 can be coupled through the electrons of the central core. Through electrical manipulation of the molecular redox potential, the charge of the core can be changed. With this setup, two-qubit gates and qubit readout can be implemented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polyoxometalate hosting two spin qubits.
Figure 2: Electrical two-qubit gating.
Figure 3: Average fidelity for the two-qubit quantum gate.
Figure 4: Readout through tunnelling.

Similar content being viewed by others

References

  1. van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1 (2003).

    Article  CAS  Google Scholar 

  2. Burkard, G., Loss, D. & DiVincenzo, D. P. Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999).

    Article  CAS  Google Scholar 

  3. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).

    Article  CAS  Google Scholar 

  4. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  5. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, New York, 2000).

    Google Scholar 

  6. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  7. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  CAS  Google Scholar 

  8. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  CAS  Google Scholar 

  9. Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    Article  CAS  Google Scholar 

  10. Jo, M.-H. et al. Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett. 6, 2014–2020 (2006).

    Article  CAS  Google Scholar 

  11. Kahn, O. Molecular Magnetism (VCH, New York, 1993).

    Google Scholar 

  12. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, Oxford, 2006).

    Book  Google Scholar 

  13. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133 (1999).

    Article  CAS  Google Scholar 

  14. Coronado, E., Galán-Mascarós, J. R., Gómez-García, C. J. & Laukhin, V. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408, 447–449 (2000).

    Article  CAS  Google Scholar 

  15. Real, J. A., Gaspar, A. B., Niel, V. & Muñoz, M. C. Communication between iron(ii) building blocks in cooperative spin transition phenomena. Coord. Chem. Rev. 236, 121–141 (2003).

    Article  CAS  Google Scholar 

  16. Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).

    Article  CAS  Google Scholar 

  17. Hill, C. L. Special thematic issue on polyoxometalates, Chem. Rev. 98, 1–390 (1998).

    Article  CAS  Google Scholar 

  18. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

    Article  Google Scholar 

  19. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789 (2001).

    Article  CAS  Google Scholar 

  20. Troiani, F., Affronte, M., Carretta, S., Santini, P. & Amoretti, G. Proposal for quantum gates in permanently coupled antiferromagnetic spin rings without need of local fields. Phys. Rev. Lett. 94, 190501 (2005).

    Article  Google Scholar 

  21. Chen, Q. & Hill, C. L. A bivanadyl capped, highly reduced keggin polyanion, [PMoV6MoVI6 O40(VIVO)2]5 −. Inorg. Chem. 35, 2403–2405 (1996).

    Article  CAS  Google Scholar 

  22. Keggin, J. F. Structure of the molecule of 12-phosphotungstic acid. Nature 131, 908 (1933).

    Article  CAS  Google Scholar 

  23. Datta, S. et al. Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530 (1997).

    Article  CAS  Google Scholar 

  24. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    Article  CAS  Google Scholar 

  25. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    Article  CAS  Google Scholar 

  26. Wolf, E. L. Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  27. Lehmann, J. & Loss, D. Cotunneling current through quantum dots with phonon-assisted spin-flip processes. Phys. Rev. B 73, 045328 (2006).

    Article  Google Scholar 

  28. Shi, Z., Peng, J., Gómez-García, C. J., Benmansour, S. & Gu, X. Influence of metal ions on the structures of keggin polyoxometalate-based solids: Hydrothermal syntheses, crystal structures and magnetic properties. J. Solid State Chem. 179, 253–265 (2006).

    Article  CAS  Google Scholar 

  29. Bonchio, M., Bortolini, O., Conte, V. & Sartorel, A. Electrospray behavior of lacunary keggin-type polyoxotungstates [XW11O39]p − (X= Si, P): Mass spectrometric evidence for a concentration-dependent incorporation of an MOn + (M = WVI, MoVI, VV) unit into the polyoxometalate vacancy. Eur. J. Inorg. Chem. 4, 699–704 (2003).

    Article  Google Scholar 

  30. Mayer, C. R. et al. New organosilyl derivatives of the dawson polyoxometalate [α2P2W17O61(RSi)2O]6 −: Synthesis and mass spectrometric investigation. Chem. Eur. J. 10, 5517–5523 (2004).

    Article  CAS  Google Scholar 

  31. Shultz, D. A. & Sandberg, K. A. Semiempirical computational assessment of porphyrins as building blocks for molecule-based magnets: spin–spin coupling in radical-substituted metallo porphyrins. J. Phys. Org. Chem. 12, 10–18 (1999).

    Article  CAS  Google Scholar 

  32. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    Article  CAS  Google Scholar 

  33. Engel, H.-A. & Loss, D. Detection of single spin decoherence in a quantum dot via charge currents. Phys. Rev. Lett. 86, 4648–4651 (2001).

    Article  CAS  Google Scholar 

  34. Kohler, S., Lehmann, J. & Hänggi, P. Driven transport on the nanoscale. Phys. Rep. 406, 379–443 (2005).

    Article  CAS  Google Scholar 

  35. Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: The two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W.A. Coish for discussions and Murad AlDamen for his collaboration with the ab initio calculations. Financial support by the EU Research Training Network QuEMolNa (MRTN-CT-2003-5044880), the EU Network of Excellence MAGMANet (NMP3-CT-2005-515767), the National Center of Competence in Research Nanoscience, the Swiss NSF, the Spanish Ministerio de Educación y Ciencia (MAT2004-3849) and the Generalitat Valenciana is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Loss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary discussion, figures S1 and S2, supplementary references (PDF 1162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, J., Gaita-Arin̄o, A., Coronado, E. et al. Spin qubits with electrically gated polyoxometalate molecules. Nature Nanotech 2, 312–317 (2007). https://doi.org/10.1038/nnano.2007.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing