Article | Published:

Carbon nanotube superconducting quantum interference device

Nature Nanotechnology volume 1, pages 5359 (2006) | Download Citation

Subjects

Abstract

A superconducting quantum interference device (SQUID) with single-walled carbon nanotube (CNT) Josephson junctions is presented. Quantum confinement in each junction induces a discrete quantum dot (QD) energy level structure, which can be controlled with two lateral electrostatic gates. In addition, a backgate electrode can vary the transparency of the QD barriers, thus permitting change in the hybridization of the QD states with the superconducting contacts. The gates are also used to directly tune the quantum phase interference of the Cooper pairs circulating in the SQUID ring. Optimal modulation of the switching current with magnetic flux is achieved when both QD junctions are in the ‘on’ or ‘off’ state. In particular, the SQUID design establishes that these CNT Josephson junctions can be used as gate-controlled π-junctions; that is, the sign of the current–phase relation across the CNT junctions can be tuned with a gate voltage. The CNT-SQUIDs are sensitive local magnetometers, which are very promising for the study of magnetization reversal of an individual magnetic particle or molecule placed on one of the two CNT Josephson junctions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239, 992–997 (1988).

  2. 2.

    & (eds) The SQUID Handbook (Wiley-VCH, Weinheim, 2004).

  3. 3.

    Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

  4. 4.

    , , & Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964).

  5. 5.

    , , & Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

  6. 6.

    et al. Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium ferrite. Phys. Rev. Lett. 79, 4014–4017 (1997).

  7. 7.

    & Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

  8. 8.

    et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

  9. 9.

    , & Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

  10. 10.

    et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

  11. 11.

    , & Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002).

  12. 12.

    et al. Supercurrents through single-walled carbon nanotubes. Science 397, 598–601 (1999).

  13. 13.

    , & Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006).

  14. 14.

    , , , & Electron transport in single-wall carbon nanotube weak links in the Fabry-Perot regime. Phys. Rev. Lett. 96, 207003 (2006).

  15. 15.

    The Single Cooper Pair Transistor: A Macroscopic Quantum Device. Thesis, Univ. Paris 6 (1995); available at

  16. 16.

    & Resonant Josephson current through Kondo impurities in a tunnel barrier. JETP Lett. 49, 659–662 (1989).

  17. 17.

    , , & Resonant tunneling through a small quantum dot coupled to superconducting leads. Phys. Rev. B 55, 6137–6140 (1997).

  18. 18.

    , & Josephson coupling through a quantum dot. Phys. Rev. B 64, 233301 (2001).

  19. 19.

    Some novel effects in superconducting nanojunctions. Low Temp. Phys. 30, 568–578 (2004).

  20. 20.

    & Josephson current through a nanoscale magnetic quantum dot. Phys. Rev. Lett. 93, 047002 (2004).

  21. 21.

    , , & Kondo effect and Josephson current through a quantum dot between two superconductors. Phys. Rev. B 70, 020502 (2004).

  22. 22.

    & Revival of the Kondo effect. Phys. World 14, 33–38 (January 2001).

  23. 23.

    et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

  24. 24.

    , & Quantum dot in the Kondo regime coupled to superconductors. Phys. Rev. Lett. 89, 256801 (2002).

  25. 25.

    et al. Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91, 057005 (2003).

  26. 26.

    & Shell filling in closed single-wall carbon nanotube quantum dots. Phys. Rev. Lett. 89, 046803 (2002).

  27. 27.

    & Addition energies of fullerenes and carbon nanotubes as quantum dots: the role of symmetry. Phys. Rev. Lett. 91, 116803 (2003).

  28. 28.

    & Single-electron Tunneling and Mesoscopic Devices (eds & ) 175–179 (Springer, Berlin, 1992); ibid. <> (2001).

  29. 29.

    , , , & Observation of parity-induced suppression of Josephson tunneling in the superconducting single-electron transistor. Phys. Rev. Lett. 72, 2458–2461 (1994).

  30. 30.

    , , , & Thermal activation above a dissipation barrier: switching of a small Josephson junction. Phys. Rev. Lett. 77, 3435–3438 (1996).

  31. 31.

    et al. Design and realization of an all d-wave dc π-superconducting quantum interference device. Appl. Phys. Lett. 76, 912–914 (2000).

  32. 32.

    et al. Josephson junction through a thin ferromagnetic layer: negative coupling. Phys. Rev. Lett. 89, 137007 (2002).

  33. 33.

    et al. Phase sensitive experiments in ferromagnetic-based Josephson junctions. Phys. Rev. Lett. 90, 167001 (2003).

  34. 34.

    & Controllable π-SQUID. Appl. Phys. Lett. 79, 2940–2942 (2001).

  35. 35.

    , & Reversing the direction of the supercurrent in a controllable Josephson junction. Nature 397, 43–45 (1999).

  36. 36.

    , , , & Environmentally decoupled sds-wave Josephson junctions for quantum computing. Nature 398, 679–681 (1999).

  37. 37.

    , , & Superconducting qubit with a ferromagnetic Josephson junction. Phys. Rev. Lett. 95, 097001 (2005).

  38. 38.

    , , , & Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003).

  39. 39.

    & Design and performance aspects of pickup loop structures for miniature SQUID magnetometry. IEEE Appl. Supercond. 5, 2133–2136 (1995).

  40. 40.

    , & Superconducting quantum interference device amplifiers at gigahertz frequencies. Appl. Phys. Lett. 82, 3266–3268 (2003).

  41. 41.

    Classical and quantum magnetization reversal studies in nanometer-sized particles and clusters. Adv. Chem. Phys. 188, 99–190 (2001).

  42. 42.

    et al. Magnetic anisotropy of a single cobalt nanocluster. Phys. Rev. Lett. 86, 4676–4679 (2001).

  43. 43.

    et al. RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004).

  44. 44.

    et al. Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction. Phys. Rev. Lett. 94, 027005 (2005).

  45. 45.

    & Superconductor coupled to two Luttinger liquids as an entangler for electron spins. Phys. Rev. B 65, 165327 (2002).

  46. 46.

    , , & Quantum entanglement in carbon nanotubes. Phys. Rev. Lett. 89, 037901 (2002).

  47. 47.

    et al. Single-walled carbon nanotube–superconductor entangler: noise correlations and Einstein–Podolsky–Rosen states. Nanotechnology 14, 77–85 (2003).

  48. 48.

    et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–485 (1996).

  49. 49.

    , , & Combing a carbon nanotube on a flat metal–insulator–metal nanojunction. Europhys. Lett. 48, 292–298 (1999).

  50. 50.

    , , & Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

Download references

Acknowledgements

We thank the TEAM group of LAAS (Toulouse) for their help in clean room processes, and acknowledge our participation in the International GDR #2756 CNRS “Science and Applications of Nanotubes”. We thank F. Balestro, B. Barbara, H. Bouchiat, E. Eyraud, I. Siddiqi and C. Thirion for important contributions and discussions. This work was supported by the EC-TMR Network QuEMolNa (MRTN-CT-2003-504880), the NoE Network MAGMANet, CNRS, and Rhône-Alpes funding.

Author information

Affiliations

  1. Centre d'Elaboration des Matériaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4, France

    • J.-P. Cleuziou
    • , T. Ondarçuhu
    •  & M. Monthioux
  2. Laboratoire L. Néel, LLN-CNRS, associé à l'UJF, BP 166, 38042 Grenoble Cedex 9, France

    • W. Wernsdorfer
  3. Centre de Recherches sur les Très Basses Températures, CRTBT-CNRS, associé à l'UJF, BP 166, 38042 Grenoble Cedex 9, France

    • V. Bouchiat

Authors

  1. Search for J.-P. Cleuziou in:

  2. Search for W. Wernsdorfer in:

  3. Search for V. Bouchiat in:

  4. Search for T. Ondarçuhu in:

  5. Search for M. Monthioux in:

Contributions

J.-P.C. fabricated the devices, and W.W. conceived and performed the experiments with help from J.-P.C. and V.B. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to W. Wernsdorfer.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary information and figures S1-S6

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2006.54

Further reading