Review Article | Published:

Making molecular machines work

Nature Nanotechnology volume 1, pages 2535 (2006) | Download Citation

Subjects

Abstract

In this review we chart recent advances in what is at once an old and very new field of endeavour — the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a discussion of design principles used to control linear and rotary motion in such molecular systems, this review will address the advances towards the construction of synthetic machines that can perform useful functions. Approaches taken by several research groups to construct wholly synthetic molecular machines and devices are compared. This will be illustrated with molecular rotors, elevators, valves, transporters, muscles and other motor functions used to develop smart materials. The demonstration of molecular machinery is highlighted through recent examples of systems capable of effecting macroscopic movement through concerted molecular motion. Several approaches to illustrate how molecular motor systems have been used to accomplish work are discussed. We will conclude with prospects for future developments in this exciting field of nanotechnology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Biochemistry 5th edn (W. H. Freeman, New York, 2006).

  2. 2.

    & Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

  3. 3.

    (ed.) Molecular Motors (Wiley-VCH, Weinheim, Germany 2003).

  4. 4.

    Molecular motors: What makes ATP synthase spin? Nature 402, 247–249 (1999).

  5. 5.

    Cell Movements: From Molecules to Motility (Garland, New York, 1992).

  6. 6.

    & Biomolecular motors. Nanotoday 8, 22–29 (2005).

  7. 7.

    & Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev. Mol. Biotechnol. 82, 67–85 (2001).

  8. 8.

    , , & A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

  9. 9.

    , & A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Edn 44, 4358–4361 (2005).

  10. 10.

    & DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl Acad. Sci. USA 100, 1569–1573 (2003).

  11. 11.

    & Cell biology: Guiding ATM to broken DNA. Science 308, 510–511 (2005).

  12. 12.

    The Pleasure of Finding Things Out (Perseus Books: Cambridge, Massachusetts, 1999). There's Plenty of Room at the Bottom

  13. 13.

    Synthetic molecular motors. Nature 401, 120–121 (1999).

  14. 14.

    Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001).

  15. 15.

    , , & Molecular machines based on metal ion translocation. Acc. Chem. Res. 34, 488–493 (2001).

  16. 16.

    , , , & Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001).

  17. 17.

    (ed.) Molecular Machines and Motors (Springer, Berlin, 2001).

  18. 18.

    In control of motion: from molecular switches to molecular motors. Acc. Chem. Res. 34, 504–513 (2001).

  19. 19.

    , , & Chiroptical molecular switches. Chem. Rev. 100, 1789–1816 (2001).

  20. 20.

    Molecular machines. Acc. Chem. Res. 34, 410–411 (2001).

  21. 21.

    (ed.) Molecular Switches (Wiley-VCH, Weinheim, Germany, 2001).

  22. 22.

    , , & Molecular reactors and machines: How useful are molecular mechanical devices? Chem. Eur. J. 10, 3120–3128 (2004).

  23. 23.

    , , & Dream machines. Adv. Mater. 17, 3011–3018 (2005).

  24. 24.

    & (eds) Oxford Dictionary of English (Oxford Univ. Press, Oxford, 2005).

  25. 25.

    Making molecules into motors. Sci. Am. 285, 45–51 (2001).

  26. 26.

    Thermodynamics and kinetics of a brownian motor. Science 276, 917–922 (1997).

  27. 27.

    , , & Catalytic wheel as a brownian motor. J. Phys. Chem. B 108, 15880–15889 (2004).

  28. 28.

    The once and future nanomachine. Biology outmatches futurists' most elaborate fantasies for molecular robots. Sci. Am. 285, 78–84 (2001).

  29. 29.

    , & Beyond switches: Ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

  30. 30.

    Inventing the nanomolecular wheel. Science 310, 63–64 (2005).

  31. 31.

    Synthesis of technomimetic molecules: towards rotation control in single molecular machines and motors. Org. Biomol. Chem. 3, 1165–1169 (2005).

  32. 32.

    Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure. Proc. Natl Acad. Sci. USA 102, 10771–10776 (2005).

  33. 33.

    , , , & Molecular compasses and gyroscopes: Engineering molecular crystals with fast internal rotation. Cryst. Growth Des. 4, 15–18 (2004).

  34. 34.

    & Toward self-assembled surface-mounted prismatic altitudinal rotors. A test case: trigonal and tetragonal prisms. J. Org. Chem. 70, 5442–5448 (2005).

  35. 35.

    & Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics. Proc. Natl Acad. Sci. USA 102, 14175–14180 (2005).

  36. 36.

    et al. Electrical or photocontrol of the rotary motion of a metallacarborane. Science 303, 1849–1851 (2004).

  37. 37.

    , , & Gyroscope-like molecules consisting of PdX2/PtX2 rotators encased in three-spoke stators: synthesis via alkene metathesis, and facile substitution and demetalation. J. Am. Chem. Soc. 128, 4962–4963 (2006).

  38. 38.

    , , & Crystalline molecular machines: A quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413–422 (2006).

  39. 39.

    , , & Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

  40. 40.

    , , & Autonomous movement and self-assembly. Angew. Chem. Int. Edn 41, 652–654 (2002).

  41. 41.

    et al. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

  42. 42.

    , , & Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Edn 44, 744–746 (2005).

  43. 43.

    , , & Synthetic self-propelled nanorotors. Chem. Commun. 441–443 (2005).

  44. 44.

    et al. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005).

  45. 45.

    et al. Catalytic molecular motors: Fueling autonomous movement by surface bond synthetic Manganese catalases. Chem. Commun. 3936–3938 (2005).

  46. 46.

    , , , & Artificial molecular-level machines: Which energy to make them work? Acc. Chem. Res. 34, 445–455 (2001).

  47. 47.

    , & Undirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

  48. 48.

    , , & A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

  49. 49.

    , , & Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

  50. 50.

    , & A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

  51. 51.

    , , & Light-driven molecular rotor. Nature 401, 152–155 (1999).

  52. 52.

    , & In control of switching, motion, and organization. Pure Appl. Chem. 75, 563–575 (2003).

  53. 53.

    , , , & Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

  54. 54.

    et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

  55. 55.

    et al. Time-resolved resonance Raman study of S-1 cis-stilbene and its deuterated isotopomers. J. Raman Spec. 34, 886–891 (2003).

  56. 56.

    , , & Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J. Am. Chem. Soc. 128, 5127–5135 (2006).

  57. 57.

    , & On the way to rotaxane-based molecular motors: Studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001).

  58. 58.

    , , & A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

  59. 59.

    et al. Electrochemically switchable hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 125, 8644–8654 (2003).

  60. 60.

    et al. Quantifying the working stroke of tetrathiafulvalene-based electrochemically-driven linear motor-molecules. Chem. Commun. 144–146 (2006).

  61. 61.

    , , , & A mechanically interlocked bundle. Chem. Eur. J. 10, 1926–1935 (2004).

  62. 62.

    , , , & A generic basis for some simple light-operated mechanical molecular machines. J. Am. Chem. Soc. 126, 12210–12211 (2004).

  63. 63.

    et al. Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291, 2124–2128 (2001).

  64. 64.

    & Photochemistry: lighting up nanomachines. Nature 440, 286–287 (2006).

  65. 65.

    et al. Autonomous artificial nanomotor powered by sunlight. Proc. Natl Acad. Sci. USA 103, 1178–1183 (2006).

  66. 66.

    , & Towards artificial muscles at the nanometric level. Chem. Commun. 1613–1616 (2003).

  67. 67.

    , -W, , & Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86, 1640–1648 (2001).

  68. 68.

    , , & Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

  69. 69.

    , , , & A molecular elevator. Science 303, 1845–1849 (2004).

  70. 70.

    et al. Operating molecular elevators. J. Am. Chem. Soc. 128, 1489–1499 (2006).

  71. 71.

    , , & Light-driven open-close motion of chiral molecular scissors. J. Am. Chem. Soc. 125, 5612–5613 (2003).

  72. 72.

    , & Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

  73. 73.

    , & En route to a motorized nanocar. Org. Lett. 8, 1713–1716 (2006).

  74. 74.

    et al. Dipolar and nonpolar altitudinal molecular rotors mounted on a Au(111) surface. J. Am. Chem. Soc. 126, 4540–4542 (2004).

  75. 75.

    & Altitudinal surface-mounted molecular rotors. Top. Curr. Chem. 262, 63–97 (2005).

  76. 76.

    , , , & Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708–5715 (2006).

  77. 77.

    , , , & Synthesis of new diaryl-substituted triple-decker and tetraaryl-substituted double-decker lanthanum(III) porphyrins and their porphyrin ring rotational speed as compared with that of double-decker cerium(IV) porphyrins. Bull. Chem. Soc. Jpn 74, 739–746 (2001).

  78. 78.

    , & Photochemistry of chromophore-functionalized gold nanoparticles. Pure Appl. Chem. 74, 1731–1738 (2002).

  79. 79.

    et al. A three-pole supramolecular switch. J. Am. Chem. Soc. 121, 3951–3957 (1999).

  80. 80.

    et al. Mechanical shuttling of linear motor-molecules in condensed phases on solid substrates. Nano Lett. 4, 2065–2071 (2004).

  81. 81.

    , & Models of charge transport and transfer in molecular switch tunnel junctions of bistable catenanes and rotaxanes. Chem. Phys. 324, 280–290 (2006).

  82. 82.

    , , , & Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices. J. Phys. Chem. B 110, 7609–7612 (2006).

  83. 83.

    Towards powering nanometer-scale devices with molecular motors, single molecule engines. Macromol. Chem. Phys. 207, 573–575 (2006).

  84. 84.

    et al. A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85, 5391–5393 (2003).

  85. 85.

    et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

  86. 86.

    et al. Photoswitched wettability on inverse opal modified by a self-assembled azobenzene monolayer. Chem. Phys. Chem. 7, 575–578 (2006).

  87. 87.

    , , , , & Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

  88. 88.

    , , , & Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry 41, 6354–6368 (2002).

  89. 89.

    , , & Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. Acc. Chem. Res. 34, 865–873 (2001).

  90. 90.

    , , , & Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304, 278–281 (2004).

  91. 91.

    , & Photoswitching of stereoselectivity in catalysis using a copper dithienylethene complex. Angew. Chem. Int. Edn 44, 2019–2021 (2005).

  92. 92.

    Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000).

  93. 93.

    & Photoswitched and functionalized oligothiophenes: Synthesis and photochemical and electrochemical properties. Chem. Eur. J. 2, 1399–1406 (1996).

  94. 94.

    et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

  95. 95.

    , & Gated molecular and biomolecular optoelectronic systems via photoisomerizable monolayer electrodes. J. Phys. Org. Chem. 11, 546–560 (1998).

  96. 96.

    & Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Edn 39, 1180–1218 (2000).

  97. 97.

    , , , & Induced structure of a helical switch as a mechanism to regulate enzymatic activity. Nature Struc. Mol. Biol. 12, 1019–1020 (2005).

  98. 98.

    , , , & Surface-mediated photoalignment of discotic liquid crystals on azobenzene polymer films. J. Phys. Chem. B 109, 9245–9254 (2005).

  99. 99.

    , , & Controlling wettability by light: illuminating the molecular mechanism. Eur. Phys. J. E 10, 103–114 (2003).

  100. 100.

    , & Photocontrol of liquid motion on an azobenzene monolayer. J. Mater. Chem. 12, 2262–2269 (2002).

  101. 101.

    et al. Macroscopic transport by synthetic molecular machines. Nature Mater. 4, 704–710 (2005).

  102. 102.

    et al. Nanomotor rotates microscale objects. A molecular motor in a liquid-crystal film uses light to turn items thousands of times larger than itself. Nature 440, 163 (2006).

  103. 103.

    , , & Unidirectional rotary motion in a liquid crystalline environment: Color tuning by a molecular motor. Proc. Natl Acad. Sci. USA 99, 4945–4949 (2002).

  104. 104.

    et al. Single molecule force spectroscopy of azobenzene polymers: switching elasticity of single photochromic macromolecules. Macromolecules 36, 2015–2023 (2003).

  105. 105.

    et al. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

  106. 106.

    et al. Large amplitude light-induced motion in high elastic modulus polymer actuators. J. Mater. Chem. 15, 5043–5048 (2005).

  107. 107.

    , & Powering nanodevices with biomolecular motors. Chem. Eur. J. 10, 2110–2116 (2004).

  108. 108.

    , , & A light-actuated nanovalve derived from a channel protein. Science 309, 755–758 (2005).

  109. 109.

    et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nature Chem. Biol. 2, 47–52 (2006).

  110. 110.

    , & An electric cyclophane: Cavity control based on the rotation of a paraphenylene by redox switching. J. Am. Chem. Soc. 127, 16404–16405 (2005).

  111. 111.

    et al. A reversible molecular valve. Proc. Natl. Acad. Sci. USA 102, 10029–10034 (2005).

Download references

Acknowledgements

The Authors thank M. M. Pollard for many suggestions and reading of the manuscript.

Author information

Affiliations

  1. Organic and Molecular Inorganic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.

    • Wesley R. Browne
    •  & Ben L. Feringa

Authors

  1. Search for Wesley R. Browne in:

  2. Search for Ben L. Feringa in:

Corresponding author

Correspondence to Ben L. Feringa.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nnano.2006.45

Further reading