Brief Communication | Published:

Chemosensitive serotonergic neurons are closely associated with large medullary arteries

Nature Neuroscience volume 5, pages 401402 (2002) | Download Citation

Subjects

Abstract

We have previously shown that serotonergic neurons of the medulla are strongly stimulated by an increase in CO2, suggesting that they are central respiratory chemoreceptors. Here we used confocal imaging and electron microscopy to show that neurons immunoreactive for tryptophan hydroxylase (TpOH) are tightly apposed to large arteries in the rat medulla. We used patch-clamp recordings from brain slices to confirm that neurons with this anatomical specialization are chemosensitive. Serotonergic neurons are ideally situated for sensing arterial blood CO2, and may help maintain pH homeostasis via wide-ranging effects on brain function. The results reported here support a recent proposal that sudden infant death syndrome (SIDS) results from a developmental abnormality of medullary serotonergic neurons1.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & J. Neuropathol. Exp. Neurol. 60, 228–247 (2001).

  2. 2.

    Neurosci. 6, 557–618 (1981).

  3. 3.

    & Physiol. Rev. 72, 165–229 (1992).

  4. 4.

    J. Physiol. (Lond.) 380, 373–385 (1986).

  5. 5.

    , , , & J. Neurophysiol. 85, 2224–2235 (2001).

  6. 6.

    , & J. Physiol. (Lond.) 511, 433–450 (1998).

  7. 7.

    , , , & J. Physiol. (Paris) 88, 81–88 (1994).

  8. 8.

    , & J. Appl. Physiol. 80, 108–115 (1996).

  9. 9.

    , , & J. Neurosci. 15, 5346–5359 (1995).

  10. 10.

    , , & J. Appl. Physiol. 18, 523–533 (1963).

  11. 11.

    , & Resp. Physiol. 10, 198–212 (1970).

  12. 12.

    & Am. J. Anat. 155, 467–481 (1979).

  13. 13.

    , & Exp. Neurol. 47, 316–329 (1975).

  14. 14.

    , , & Resp. Physiol. 129, 175–189 (2001).

  15. 15.

    et al. J. Neuropathol. Exp. Neurol. 59, 377–384 (2000).

Download references

Acknowledgements

Supported by US National Institutes of Health HL-52539 (S.R.B., W.W. and G.B.R.), the Veteran's Affairs Medical Center (G.B.R.) and the Howard Hughes Medical Institute (R.A.J.). Special thanks to S. Segal for providing FITC-BSA.

Author information

Affiliations

  1. Departments of Neurology, 333 Cedar Street, New Haven, Connecticut 06510, USA

    • Stefania Risso Bradley
    • , Wengang Wang
    • , Christopher A. Severson
    •  & George B. Richerson
  2. Departments of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, USA

    • Vincent A. Pieribone
    •  & George B. Richerson
  3. The J. Pierce Laboratory, 290 Congress, New Haven, Connecticut 06510, USA

    • Vincent A. Pieribone
  4. The Salk Institute, 10010 N Torrey Pines Road. La Jolla, California 92037, USA

    • Richard A. Jacobs
  5. The Veteran's Affairs Medical Center, 950 Campbell Avenue, West Haven, Connecticut 06516, USA

    • George B. Richerson

Authors

  1. Search for Stefania Risso Bradley in:

  2. Search for Vincent A. Pieribone in:

  3. Search for Wengang Wang in:

  4. Search for Christopher A. Severson in:

  5. Search for Richard A. Jacobs in:

  6. Search for George B. Richerson in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to George B. Richerson.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nn848

Further reading