Humans and great apes share a large frontal cortex

Abstract

Some of the outstanding cognitive capabilities of humans are commonly attributed to a disproportionate enlargement of the human frontal lobe during evolution. This claim is based primarily on comparisons between the brains of humans and of other primates, to the exclusion of most great apes. We compared the relative size of the frontal cortices in living specimens of several primate species, including all extant hominoids, using magnetic resonance imaging. Human frontal cortices were not disproportionately large in comparison to those of the great apes. We suggest that the special cognitive abilities attributed to a frontal advantage may be due to differences in individual cortical areas and to a richer interconnectivity, none of which required an increase in the overall relative size of the frontal lobe during hominid evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Three-dimensional reconstruction of the brain of (a) a common chimpanzee and (b) a human.
Figure 2: Logarithmic plot of the volume of the frontal cortex against the total volume of the hemispheres minus the frontal cortex.
Figure 3

References

  1. 1

    Goldman-Rakic, P. S. The frontal lobes: uncharted provinces of the brain. Trends Neurosci. 7, 425–429 (1984).

    Article  Google Scholar 

  2. 2

    Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Fuster, J. M. The Prefrontal Cortex. Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  4. 4

    Holloway, R. L. The evolution of the primate brain: some aspects of quantitative relations. Brain Res. 7, 121–172 (1968).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Jerison, H. J. in Development of the Prefrontal Cortex: Evolution, Neurobiology, and Behavior (eds. Krasnegor, N. A., Lyon, R. & Goldman-Rakic, P. S.) 9–26 (Brooks, Baltimore, 1997).

    Google Scholar 

  6. 6

    Deacon, T. W. The Symbolic Species (Norton, New York, 1997).

    Google Scholar 

  7. 7

    Brodmann, K. Neue Ergebnisse über die vergleichende histologische Lokalisation der Grosshirnrinde mit besonderer Berücksichtigung des Stirnhirns. Anat. Anzeiger 41, 157–216 (1912).

    Google Scholar 

  8. 8

    Blinkov, S. M. & Glezer, I. I. Das Zentralnervensystem in Zahlen und Tabellen (Fischer, Jena, 1968).

    Google Scholar 

  9. 9

    Uylings, H. B. M. & Van Eden, C. G. in Progress in Brain Research vol. 85 (eds. Uylings, H. B. M., Van Eden, C. G., De Bruin, J. P. C., Corner, M. A. & Feenstra, M. G. P.) 31–62 (Elsevier, New York, 1990).

    Google Scholar 

  10. 10

    Zilles, K., Armstrong, E., Schleicher, A. & Kretschmann, H. The human pattern of gyrification in the cerebral cortex. Anat. Embryol. 179, 173–179 (1988).

    CAS  Article  Google Scholar 

  11. 11

    McBride, T., Arnold, S. E. & Gur, R. C. A comparative volumetric analysis of the prefrontal cortex in human and baboon MRI. Brain Behav. Evol. 54, 159–166 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Semendeferi, K., Damasio, H., Frank, R. J. & Van Hoesen, G. W. The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J. Hum. Evol. 32, 375–388 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Semendeferi, K. & Damasio, H. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J. Hum. Evol. 38, 317–332 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & Van Hoesen, G. W. Prefrontal cortex in humans and apes: a comparative study of area 10. Am. J. Phys. Anthropol. 114, 224–241 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & Van Hoesen, G. W. Limbic frontal cortex in hominoids: a comparative study of area 13. Am. J. Phys. Anthropol. 106, 129–155 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Damasio, A. R. Descartes' Error (Grosset/Putnam, New York, 1994).

    Google Scholar 

  17. 17

    Buxhoeveden, D. P., Switala, A. E., Roy, E., Litaker, M. & Casanova, M. F. Morphological differences between minicolumns in human and nonhuman primate cortex. Am. J. Phys. Anthropol. 115, 361–371 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Preuss, T. M., Qi, H. & Kaas, J. H. Distinctive compartmental organization of human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 11601–11606 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Zhang, K. & Sejnowski, T. J. A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl. Acad. Sci. USA 97, 5621–5626 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    de Winter, W. & Oxnard, C. E. Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409, 710–714 (2001).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1583 (1995).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Clark, D. A., Mitra, P. P. & Wang, S. S.-H. Scalable architecture in mammalian brains. Nature 411, 189–193 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Nimchinsky, E. A. et al. A neuronal morphologic type unique to humans and great apes. Proc. Natl. Acad. Sci. USA 96, 5268–5273 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Radinsky, L. The fossil evidence of anthropoid brain evolution. Am. J. Phys. Anthropol. 41, 15–28 (1974).

    Article  Google Scholar 

  25. 25

    Damasio, H. & Frank, R. J. Three dimensional in vivo mapping of brain lesions in humans. Arch. Neurol. 49, 137–143 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Frank, R. J., Damasio, H. & Grabowski, T. J. Brainvox: an interactive, multimodal, visualization and analysis system for neuroanatomical imaging. Neuroimage 5, 13–30 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Roland, P. E. & Zilles, K. Brain atlases—a new research tool. Trends Neurosci. 17, 458–467 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Smith, R. J. Current events: regression models for prediction equations. J. Hum. Evol. 26, 239–244 (1994).

    Article  Google Scholar 

  29. 29

    Aiello, L. C. Allometry and the analysis of size and shape in human evolution. J. Hum. Evol. 22, 127–147 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Wolfson and D. Politis for statistical consulting and J. Spradling and N. Xenitopoulos for technical and graphic support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Semendeferi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Semendeferi, K., Lu, A., Schenker, N. et al. Humans and great apes share a large frontal cortex. Nat Neurosci 5, 272–276 (2002). https://doi.org/10.1038/nn814

Download citation

Further reading