Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin

Abstract

In mammals, many daily cycles are driven by a central circadian clock, which is based on the cell-autonomous rhythmic expression of clock genes. It is not clear, however, how peripheral cells are able to interpret the rhythmic signals disseminated from this central oscillator. Here we show that cycling expression of the clock gene Period1 in rodent pituitary cells depends on the heterologous sensitization of the adenosine A2b receptor, which occurs through the nocturnal activation of melatonin mt1 receptors. Eliminating the impact of the neurohormone melatonin simultaneously suppresses the expression of Period1 and evokes an increase in the release of pituitary prolactin. Our findings expose a mechanism by which two convergent signals interact within a temporal dimension to establish high-amplitude, precise and robust cycles of gene expression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Rhythmic expression of mPer1 mRNA and mPER1 protein in the mouse pars tuberalis (PT) is driven by endogenous melatonin.
Figure 2: Melatonin sensitizes adenosinergic and/or cAMP-mediated expression of mPER1 in rodent PT cells.
Figure 3: Disinhibition of prolactin concentrations in the blood of melatonin mt1 receptor knockout (mt1R−/−) mice.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Klein, D. C., Moore, R. Y. & Reppert, S. M. (eds.) Suprachiasmatic Nucleus: The Mind's Clock (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  2. 2

    Sun, Z. S. et al. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003–1011 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Shigeyoshi, Y. et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91, 1043–1053 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Bae, K. et al. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525–536 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signalling. Science 289, 2344–2347 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgentic rats. Science 228, 682–685 (2000).

    Article  Google Scholar 

  10. 10

    Rajaratnam, S. M. & Arendt, J. Health in a 24-h society. Lancet 358, 999–1005 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Takekida, S., Yan, L., Maywood, E. S., Hastings, M. H. & Okamura, H. Differential adrenergic regulation of the circadian expression of the clock genes Period1 and Period2 in the rat pineal gland. Eur. J. Neurosci. 12, 4557–4561 (2000).

    CAS  Article  Google Scholar 

  13. 13

    von Gall, C. et al. Clock gene protein mPER1 is rhythmically synthesized and under cAMP control in the mouse pineal organ. J. Neuroendocrinol. 13, 313–317 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Stehle, J. H. et al. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 365, 314–320 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Maronde, E. et al. Transcription factors in neuroendocrine regulation: rhythmic changes in pCREB and ICER levels frame melatonin synthesis. J. Neurosci. 19, 3326–3336 (1999).

    CAS  Article  Google Scholar 

  16. 16

    von Gall, C. et al. Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice. Eur. J. Neurosci. 12, 964–972 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Korf, H. W., Schomerus, C. & Stehle, J. H. The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv. Anat. Embryol. Cell. Biol. 146, 1–100 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Hastings, M. H. & Follett, B. K. Toward a molecular biological calendar? J. Biol. Rhythms 16, 424–430 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Morgan, P. J. The pars tuberalis: the missing link in the photoperiodic regulation of prolactin secretion? J. Neuroendocrinol. 12, 287–295 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Messager, S., Ross, A. W., Barrett, P. & Morgan, P. J. Decoding photoperiodic time through Per1 and ICER gene amplitude. Proc. Natl. Acad. Sci. USA 96, 9938–9943 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Messager, S., Garabette, M. L., Hastings, M. L. & Hazlerigg, D. G. Tissue-specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster. NeuroReport 12, 1–4 (2001).

    Article  Google Scholar 

  22. 22

    Carlson, L. L., Weaver, D. R. & Reppert, S. M. Melatonin signal transduction in hamster brain: inhibition of adenylyl cyclase by a pertussis toxin–sensitive G protein. Endocrinology 125, 2670–2676 (1989).

    CAS  Article  Google Scholar 

  23. 23

    Hazlerigg, D. G., Gonzalez-Brito, A., Lawson, W., Hastings, M. H. & Morgan, P. J. Prolonged exposure to melatonin leads to time-dependent sensitization of adenylate cyclase and down-regulates melatonin receptors in pars tuberalis cells form ovine pituitary. Endocrinology 132, 285–292 (1991).

    Article  Google Scholar 

  24. 24

    Stehle, J. H. et al. Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol. Endocrinol. 6, 384–393 (1992).

    CAS  PubMed  Google Scholar 

  25. 25

    Stehle, J. H. Pineal gene expression: dawn in a dark matter. J. Pineal Res. 18, 179–190 (1995).

    CAS  Article  Google Scholar 

  26. 26

    McNulty, S., Ross, A. W., Shiu, K. Y., Morgan, P. J. & Hastings, M. H. Phosphorylation of CREB in ovine pars tuberalis is regulated both by cyclic AMP-dependent and cyclic AMP-independent mechanisms. J. Neuroendocrinol. 8, 635–644 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Li, X. M. et al. Relationship of atypical melatonin rhythm with two circadian clock outputs in B6D2F(1) mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, 924–930 (2000).

    Article  Google Scholar 

  28. 28

    Liu, C. et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19, 91–102 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Porkka-Heiskanen, T. et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 1265–1268 (1997).

    CAS  Article  PubMed Central  Google Scholar 

  30. 30

    Stirland, J. A. et al. Photoperiodic regulation of prolactin gene expression in the Syrian hamster by a pars tuberalis–derived factor. J. Neuroendocrinol. 13, 147–157 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Hazlerigg, D. G. What is the role of melatonin within the anterior pituitary? J. Endocrinol. 170, 493–501 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Lincoln, G. A. & Clarke, I. J. Role of the pituitary gland in the development of photorefractoriness and generation of long-term changes in prolactin secretion in rams. J. Neuroendocrinol. 7, 637–643 (1994).

    Article  Google Scholar 

  33. 33

    von Gall, C. et al. CREB in the mouse SCN: a molecular interface coding the phase adjusting stimuli of light, glutamate, PACAP and melatonin for clockwork access. J. Neurosci. 18, 10389–10397 (1998).

    CAS  Article  Google Scholar 

  34. 34

    von Gall, C., Weaver, D. R., Kock, M., Korf, H.-W. & Stehle, J. H. Melatonin limits transcriptional impact of phosphoCREB in the mouse SCN via the Mel1a receptor. NeuroReport 11, 1803–1807 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Pfeffer, M., Kühn, R., Krug, L., Korf, H.-W. & Stehle, J. H. Rhythmic variation in beta1-adrenergic receptor mRNA levels in the rat pineal gland: circadian and developmental regulation. Eur. J. Neurosci. 10, 2896–2904 (1998).

    CAS  Article  Google Scholar 

  36. 36

    Marquardt, D. L., Walker, L. L. & Heinemann, S. Cloning of two adenosine receptor subtypes from mouse bone marrow–derived mast cells. J. Immunol. 152, 4508–4515 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. M. Reppert for help with generating the melatonin mt1R−/− mice and for the antibody to mPER1; H. Zimmermann for discussion; M. L. Eifländer, C. Illickovic, D. Kärger, I. Schneider-Hüther and S. Schüßler for technical support; and E. Colnago, M. Holub, M. Kock, S. Leslie, S. Schotten and C. Schultz for help. This work was supported by grants from the Deutsche Forschungsgemeinschaft (to H.W.K. and J.H.S.), the Paul und Ursula Klein-Stiftung and the Heinrich und Fritz Riese-Stiftung (to J.H.S.), the Biotechnology and Biological Sciences Research Council and the Medical Research Council (to M.H.H.) and the NIH (AG09975 to D.R.W.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jörg H. Stehle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mechanisms for generating rhythmic gene expression in pituitary cells. At 'night', the convergent impact of adenosine and melatonin leads to acute inhibition of the cAMP signaling pathway in cells of the hypophyseal pars tuberalis, with a simultaneous heterologous sensitization of the adenosine A2b receptor (light green). This intracellular crosstalk is active during the second half of the night, when the secretion of the neurohormone melatonin from the pineal gland is high. With the decline of the inhibitory melatonin signal at 'dawn', adenosine elicits through the sensitized adenosine A2b receptor (dark green) an increased transcription of cAMP-inducible genes through phosphorylation of the activating transcription factor CREB. At 'day', the absence of the melatonin signal results in a desenstization of the adenosine A2b receptor (yellow). As a delayed consequence of the melatonin-sensitized adenosinergic signaling pathway, the translational products of cAMP-sensitive genes, such as PER1, accumulate in pituitary cells. The thickness of arrows indicates the intensity of signaling events. AC, adenylyl cyclase; ado, adenosine; A2b, adenosine 2b receptor; cAMP, cAMP; CRE, camp-responsive element; CREB, CRE-binding protein; G, G protein; P, phosphate group; PKA, protein kinase A; mel, melatonin; mt1R, melatonin mt1 receptor. (PDF 86 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Gall, C., Garabette, M., Kell, C. et al. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat Neurosci 5, 234–238 (2002). https://doi.org/10.1038/nn806

Download citation

Further reading