Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Developmental regulation of glutamate receptor field size by nonvesicular glutamate release

Abstract

We hypothesized that presynaptic glutamate regulates postsynaptic ionotropic glutamate receptor number during synaptogenesis. To test this idea, we genetically manipulated presynaptic glutamate levels at the glutamatergic Drosophila neuromuscular junction (NMJ), then microscopically and electrophysiologically measured postsynaptic glutamate receptor field size and function. Our data show that presynaptic glutamate is a strong negative regulator of postsynaptic receptor field size and function during development. Glutamate-triggered receptor downregulation was not affected by block of synaptic vesicle fusion, demonstrating that receptors are regulated by nonvesicular glutamate release. Our results reveal an elegant mechanism for receptor field regulation during synaptogenesis and reveal a nonpathological role for nonvesicular glutamate release at the synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic manipulation of presynaptic glutamate levels.
Figure 2: The number of functional postsynaptic glutamate receptors are inversely proportional to pre-synaptic glutamate levels.
Figure 3: Postsynaptic glutamate receptor field area is inversely related to presynaptic glutamate level.
Figure 4: Glutamate-dependent glutamate receptor downregulation occurs via a nonvesicular release mechanism.

Similar content being viewed by others

References

  1. Turrigiano, G. G. AMPA receptors unbound: membrane cycling and synaptic plasticity. Neuron 26, 5–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Sheng, M. & Hyoung-Lee, S. AMPA receptor trafficking and the control of synaptic transmission. Cell 105, 825–828 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Featherstone, D. E. et al. Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron 27, 71–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Featherstone, D. E. & Broadie, K. Surprises from Drosophila: genetic mechanisms of synaptic development and plasticity. Brain Res Bull 53, 501–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Seeburg, P. H. The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends. Neurosci. 16, 359–365 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Krupnick, J. G. & Benovic, J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289–319 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Lissin, D. V., Carroll, R. C., Nicoll, R. A., Malenka, R. C. & von Zastrow, M. Rapid, activation-induced redistribution of ionotropic glutamate receptors in cultured hippocampal neurons. (erratum, J. Neurosci. 19, 3275, 1999) J. Neurosci. 19, 1263–1272 (1999).

    Article  CAS  Google Scholar 

  8. Chase, B. A. & Kankel, D. R. A genetic analysis of glutamatergic function in Drosophila. J. Neurobiol. 18, 15–41 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Caggese, C., Barsanti, P., Viggiano, L., Bozzetti, M. P. & Caizzi, R. Genetic, molecular and developmental analysis of the glutamine synthetase isozymes of Drosophila melanogaster. Genetica 94, 275–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Nishikawa, K. & Kidokoro, Y. Junctional and extrajunctional glutamate receptor channels in Drosophila embryos and larvae. J. Neurosci. 15, 7905–7915 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petersen, S. A., Fetter, R. D., Noordermeer, J. N., Goodman, C. S. & DiAntonio, A. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19, 1237–1248 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Herman, B. Fluorescence Microscopy 2nd edn. (Bios Scientific, Oxford, 1998).

    Google Scholar 

  13. Attwell, D., Barbour, B. & Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron 11, 401–407 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Broadie, K. & Bate, M. Activity-dependent development of the neuromuscular synapse during Drosophila embryogenesis. Neuron 11, 607–619 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663–673 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965–971 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Jabaudon, D. et al. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc. Natl. Acad. Sci. USA 96, 8733–8738 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warr, O., Takahashi, M. & Attwell, D. Modulation of extracellular glutamate concentration in rat brain slices by cystine-glutamate exchange. J. Physiol. (Lond.) 514, 783–793 (1999).

    Article  CAS  Google Scholar 

  20. Schulze, K. L., Broadie, K., Perin, M. S. & Bellen, H. J. Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80, 311–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Koenig, J. H., Saito, K. & Ikeda, K. Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster. J. Cell Biol. 96, 1517–1522 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Saitoe, M., Schwarz, T. L., Umbach, J. A., Gundersen, C. B. & Kidokoro, Y. Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release. Science 293, 514–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Broadie, K. & Bate, M. Innervation directs receptor synthesis and localization in Drosophila embryo synaptogenesis. Nature 361, 350–353 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Sigrist, S. J. et al. Postsynaptic translation affects the efficacy and morphology of neuromuscular junctions. Nature 405, 1062–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Saitoe, M., Tanaka, S., Takata, K. & Kidokoro, Y. Neural activity affects distribution of glutamate receptors during neuromuscular junction formation in Drosophila embryos. Dev. Biol. 184, 48–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Saitoe, M., Koshimoto, H., Hirano, M., Suga, T. & Kidokoro, Y. Distribution of functional glutamate receptors in cultured embryonic Drosophila myotubes revealed using focal release of L-glutamate from caged compound by laser. J. Neurosci. Methods 80, 163–170 (1998).

    Article  PubMed  Google Scholar 

  27. Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 14112–14117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2, 315–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Jonas, P. & Spruston, N. Mechanisms shaping glutamate-mediated excitatory postsynaptic currents in the CNS. Curr. Opin. Neurobiol. 4, 366–372 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Heckmann, M. & Dudel, J. Evoked quantal currents at neuromuscular junctions of wild type Drosophila larvae. Neurosci. Lett. 256, 77–80 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Danbolt, N. C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Besson, M. T., Soustelle, L. & Birman, S. Identification and structural characterization of two genes encoding glutamate transporter homologues differently expressed in the nervous system of Drosophila melanogaster (erratum, FEBS Lett. 449, 293, 1999) FEBS Lett. 443, 97–104 (1999).

    Article  CAS  Google Scholar 

  33. Besson, M. T., Soustelle, L. & Birman, S. Selective high-affinity transport of aspartate by a Drosophila homologue of the excitatory amino-acid transporters. Curr. Biol. 10, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, M. N. et al. Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron 23, 593–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Ikeda, K., Ozawa, S. & Hagiwara, S. Synaptic transmission reversibly conditioned by single-gene mutation in Drosophila melanogaster. Nature 259, 489–491 (1976).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, M. N. et al. Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron 23, 593–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Davis, G. W. & Murphey, R. K. Retrograde signaling and the development of transmitter release properties in the invertebrate nervous system. J. Neurobiol. 25, 740–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. DiAntonio, A., Petersen, S. A., Heckmann, M. & Goodman, C. S. Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. J. Neurosci. 19, 3023–3032 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caggese, C., Caizzi, R., Barsanti, P. & Bozzetti, M. P. Mutations in the glutamine synthetase I (gsI) gene produce embryo-lethal female sterility in Drosophila melanogaster. Dev. Genet. 13, 359–366 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Caizzi, R., Bozzetti, M. P., Caggese, C. & Ritossa, F. Homologous nuclear genes encode cytoplasmic and mitochondrial glutamine synthetase in Drosophila melanogaster. J. Mol. Biol. 212, 17–26 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Caggese, C., Caizzi, R., Bozzetti, M. P., Barsanti, P. & Ritossa, F. Genetic determinants of glutamine synthetase in Drosophila melanogaster: a gene for glutamine synthetase I resides in the 21B3-6 region. Biochem. Genet. 26, 571–584 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. De Pinto, V., Caggese, C., Prezioso, G. & Ritossa, F. Purification of the glutamine synthetase II isozyme of Drosophila melanogaster and structural and functional comparison of glutamine synthetases I and II. Biochem. Genet. 25, 821–836 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Langley, C. H. et al. Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster. Genetics 99, 151–156 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Featherstone, D. E., Davis, W. S., Dubreuil, R. R. & Broadie, K. Drosophila α- and β-spectrin mutations disrupt presynaptic neurotransmitter release. J. Neurosci. 21, 4215–4224 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. White, R. in Drosophila: A Practical Approach 2nd edn. (ed. Roberts, D.) 215–240 (IRL, Oxford, 1998).

    Google Scholar 

Download references

Acknowledgements

Thanks to C. Schuster for glutamate receptor antibodies (8B4D2, now available from the University of Iowa Developmental Studies Hybridoma Bank, due to the donation of hybridoma cells by the lab of C. Goodman). Also thanks to the Bloomington Stock Center for Drosophila stocks, and Kei Ito for tips on making color figures visible to color-blind individuals. This work was supported by grants from the MDA and NIH (GM54544 to K.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David E. Featherstone or Kendal Broadie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Featherstone, D., Rushton, E. & Broadie, K. Developmental regulation of glutamate receptor field size by nonvesicular glutamate release. Nat Neurosci 5, 141–146 (2002). https://doi.org/10.1038/nn789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing