Genetic influences on brain structure

Abstract

Here we report on detailed three-dimensional maps revealing how brain structure is influenced by individual genetic differences. A genetic continuum was detected in which brain structure was increasingly similar in subjects with increasing genetic affinity. Genetic factors significantly influenced cortical structure in Broca's and Wernicke's language areas, as well as frontal brain regions (r2MZ > 0.8, p < 0.05). Preliminary correlations were performed suggesting that frontal gray matter differences may be linked to Spearman's g, which measures successful test performance across multiple cognitive domains (p < 0.05). These genetic brain maps reveal how genes determine individual differences, and may shed light on the heritability of cognitive and linguistic skills, as well as genetic liability for diseases that affect the human cortex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Genetic continuum of similarity in brain structure.
Figure 2: Correlation between twins in gray matter distribution.
Figure 3: Significance of genetic control of gray matter distribution.

References

  1. 1

    Collins, F. S. & McKusick, V. A. Implications of the Human Genome Project for medical science. JAMA 285, 540–544 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Huerta, M. F. & Koslow, S. H. Neuroinformatics: opportunities across disciplinary and national borders. Neuroimage 4, 4–6 (1996).

    Article  Google Scholar 

  3. 3

    Plomin, R. & Loehlin, J. C. Direct and indirect IQ heritability estimates: a puzzle. Behav. Genet. 19, 331–342 (1989).

    CAS  Article  Google Scholar 

  4. 4

    McClearn, G. E. et al. Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276, 1560–1563 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Alarcón, M., Plomin, R., Fulker, D. W., Corley, R. & DeFries, J. C. Multivariate path analysis of specific cognitive abilities data at 12 years of age in the Colorado Adoption Project. Behav. Genet. 28, 255–264 (1998).

    Article  Google Scholar 

  6. 6

    Eley, T. C. & Plomin, R. Genetic analyses of emotionality. Curr. Opin. Neurobiol. 7, 279–284 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Tramo, M. J. et al. Brain size, head size, and intelligence quotient in monozygotic twins. Neurology 50, 1246–1252 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Oppenheim, J. S., Skerry, J. E., Tramo, M. J. & Gazzaniga, M. S. Magnetic resonance imaging morphology of the corpus callosum in monozygotic twins. Ann. Neurol. 26, 100–104 (1989).

    CAS  Article  Google Scholar 

  9. 9

    Pfefferbaum, A., Sullivan, E. V., Swan, G. E. & Carmelli, D. Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiol. Aging 21, 63–74 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Biondi, A. et al. Are the brains of monozygotic twins similar? A three-dimensional MR study. Am. J. Neuroradiol. 19, 1361–1367 (1998).

    CAS  PubMed  Google Scholar 

  11. 11

    Bartley, A. J., Jones, D. W. & Weinberger, D. R. Genetic variability of human brain size and cortical gyral patterns. Brain 120, 257–269 (1997).

    Article  Google Scholar 

  12. 12

    Thompson, P. M. et al. Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb. Cortex 11, 1–16 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Kaprio, J., Koskenvuo, M. & Rose, R. J. Change in cohabitation and intrapair similarity of monozygotic (MZ) cotwins for alcohol use, extraversion, and neuroticism. Behav. Genet. 20, 265–276 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Cannon, T. D. et al. The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am. J. Hum. Gen. 67, 369–382 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Zijdenbos, A. P. & Dawant, B. M. Brain segmentation and white matter lesion detection in MR images. Crit. Rev. Biomed. Eng. 22, 401–465 (1994).

    CAS  PubMed  Google Scholar 

  17. 17

    Sowell, E. R. et al. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat. Neurosci. 2, 859–861 (1999).

    CAS  Article  Google Scholar 

  18. 18

    MacDonald, D., Avis, D. & Evans, A. C. Multiple surface identification and matching in magnetic resonance images. Proc. SPIE 2359, 160–169 (1994).

    Article  Google Scholar 

  19. 19

    Wright, I. C. et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage 2, 244–252 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Thompson, P. M., Woods, R. P., Mega, M. S. & Toga, A. W. Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum. Brain Mapp. 9, 81–92 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Falconer, D. S. Introduction to Quantitative Genetics Edn. 3 (Longman, Essex, UK, 1989).

    Google Scholar 

  23. 23

    Neale, M. C. & Cardon, L. R. Methodology for Genetic Studies of Twins and Families (Kluwer Academic, Boston, 1992).

    Google Scholar 

  24. 24

    Feldman, M. W. & Otto, S. P. Twin studies, heritability, and intelligence. Science 278, 1383–1384 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Loehlin, J. C. & Nichols, R. C. Heredity, Environment and Personality (Univ. of Texas Press, Austin, Texas, 1976).

    Google Scholar 

  26. 26

    Thompson, P. M. et al. in Handbook on Medical Image Analysis (ed. Fitzpatrick, M.) 1066–1131 (SPIE, Bellingham, Washington, 2000).

    Google Scholar 

  27. 27

    Rajkowska, G. & Goldman-Rakic, P. S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb. Cortex 5, 323–337 (1995).

    CAS  Article  Google Scholar 

  28. 28

    Smith, C. in Textbook of Human Genetics (eds. Fraser, G. & Mayo, O. Blackwell, Oxford, 1975).

    Google Scholar 

  29. 29

    Huntley, R. M. C. in Genetic and Environmental Factors in Human Ability (eds. Meade, J. E. & Parkes, A. S., Oliver and Boyd, Edinburgh, Scotland, 1966).

    Google Scholar 

  30. 30

    Gayan, J. & Olson, R. K. Reading disability: evidence for a genetic etiology. Eur. Child Adolesc. Psychiatry 8, 52–55 (1999).

    Article  Google Scholar 

  31. 31

    Pennington, B. F. et al. A twin MRI study of size variations in human brain. J. Cogn. Neurosci. 12, 223–232 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Tramo, M. J. et al. Surface area of human cerebral cortex and its gross morphological subdivisions. J. Cogn. Neurosci. 7, 292–301 (1995).

    CAS  Article  Google Scholar 

  33. 33

    Devlin, B., Daniels, M. & Roeder, K. The heritability of IQ. Nature 388, 468–471 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Finkel, D. et al. Longitudinal and cross-sectional twin data on cognitive abilities in adulthood: the Swedish adoption/twin study of aging. Devel. Psychol. 34, 1400–1413 (1998).

    CAS  Article  Google Scholar 

  35. 35

    Swan, G. E. et al. Heritability of cognitive performance in aging twins. The National Heart, Lung, and Blood Institute Twin Study. Arch. Neurol. 47, 259–262 (1990).

    CAS  Article  Google Scholar 

  36. 36

    Loehlin, J. C. Partitioning environmental and genetic contributions to behavioral development. Am. Psychol. 44, 1285–1292 (1989).

    CAS  Article  Google Scholar 

  37. 37

    Chipuer, H. M., Rovine, M. J., Plomin, R. LISREL Modeling: genetic and environmental influences on IQ revisited. Intelligence 14, 11–29 (1990).

    Article  Google Scholar 

  38. 38

    Plomin, R. & Petrill, S.A. Genetics and intelligence: what's new? Intelligence 24, 53–78 (1997).

    Article  Google Scholar 

  39. 39

    Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    CAS  Article  Google Scholar 

  41. 41

    Rutter, M., Silberg, J., O'Connor, T. & Simonoff, E. Genetics and child psychiatry: I. Advances in quantitative and molecular genetics. J. Child Psychol. Psychiatry 40, 3–18 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Williams, R. W., Strom, R. C., & Goldowitz, D. Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11. J. Neurosci. 18, 138–146 (1998).

    CAS  Article  Google Scholar 

  43. 43

    Hill, L. et al. DNA pooling and dense marker maps: a systematic search for genes for cognitive ability. Neuroreport 10, 843–848 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Cannon, T. D. et al. Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch. Gen. Psychiatry 51, 651–661 (1998).

    Article  Google Scholar 

  45. 45

    Weinberger, D. R., DeLisi, L. E., Neophytides, A. N. & Wyatt, R. J. Familial aspects of CT scan abnormalities in chronic schizophrenic patients. Psychiatry Res. 4, 65–71 (1981).

    CAS  Article  Google Scholar 

  46. 46

    Suddath, R. L. et al. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N. Engl. J. Med. 322, 789–794 (1990).

    CAS  Article  Google Scholar 

  47. 47

    Kreft, I. & de Leeuw, J. Introducing Multilevel Modeling (Sage, London, 1998).

    Google Scholar 

  48. 48

    Littell, R. C., Milliken, G. A., Stroup, W. W. & Wolfinger, R. D. SAS System for Mixed Models (SAS Institute, Cary, North Carolina, 1996).

    Google Scholar 

  49. 49

    Hedeker, D., Gibbons, R. D. & Flay, B. R. Random-effects regression models for clustered data with an example from smoking prevention research. J. Consult. Clin. Psychol. 62, 757–765 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Grant support was provided by a P41 Resource Grant from the National Center for Research Resources (P.T., A.W.T.; RR13642) and by a National Institute of Mental Health grant (T.D.C.). Additional support for algorithm development was provided by the National Library of Medicine, NINDS, the National Science Foundation, and a Human Brain Project grant to the International Consortium for Brain Mapping, funded jointly by NIMH and NIDA. Special thanks go to U. Mustonen, A. Tanksanen, T. Pirkola, and A. Tuulio-Henriksson for their contributions to subject recruitment and assessment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul M. Thompson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thompson, P., Cannon, T., Narr, K. et al. Genetic influences on brain structure. Nat Neurosci 4, 1253–1258 (2001). https://doi.org/10.1038/nn758

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing