Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural induction: toward a unifying mechanism

Abstract

Neural induction constitutes the initial step in the generation of the vertebrate nervous system. In attempting to understand the principles that underlie this process, two key issues need to be resolved. When is neural induction initiated, and what is the cellular source and molecular nature of the neural inducing signal(s)? Currently, these aspects of neural induction seem to be very different in amphibian and amniote embryos. Here we highlight the similarities and the differences, and we propose a possible unifying mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural induction in Xenopus.
Figure 2: Neural induction in chick.
Figure 3: Proposed signaling pathway for neural induction in the chick embryo.

Similar content being viewed by others

References

  1. Spemann, H. & Mangold, H. Uber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren. Roux. Arch. Entw. Mech. Organ. 100, 599–538 (1924).

    Google Scholar 

  2. Spemann, H. & Mangold, H. Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int. J. Dev. Biol. 45, 13–38 (2001).

    CAS  PubMed  Google Scholar 

  3. Hemmati-Brivanlou, A. & Melton, D. Vertebrate neural induction. Annu. Rev. Neurosci. 20, 43–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Ang, S. L. & Rossant, J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Klingensmith, J., Ang, S. L., Bachiller, D. & Rossant, J. Neural induction and patterning in the mouse in the absence of the node and its derivatives. Dev. Biol. 216, 535–549 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Bachiller, D. et al. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403, 658–661 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Episkopou, V. et al. Induction of the mammalian node requires Arkadia function in the extraembryonic lineages. Nature 410, 825–830 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Streit, A. et al. Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125, 507–519 (1998).

    CAS  PubMed  Google Scholar 

  9. Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. & Edlund, T. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. & Stern, C. D. Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, S. I. et al. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411, 325–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Harland, R. Neural induction. Curr. Opin. Genet. Dev. 10, 357–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Streit, A. & Stern, C. D. Neural induction. A bird's eye view. Trends. Genet. 15, 20–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Wilson, P. A. & Hemmati-Brivanlou, A. Vertebrate neural induction: inducers, inhibitors, and a new synthesis. Neuron 18, 699–710 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Sasai, Y. & De Robertis, E. M. Ectodermal patterning in vertebrate embryos. Dev. Biol. 182, 5–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Waddington, C. H. Experiments on the development of chick and duck embryos, cultivated in vitro. Phil. Trans. R. Soc. Lond. B Biol. Sci. 221, 179–230 (1932).

    Article  Google Scholar 

  17. Waddington, C. H. Induction of the primitive streak and its derivatives in the chick. J. Exp. Biol. 10, 38–46 (1933).

    Google Scholar 

  18. Kintner, C. R. & Dodd, J. Hensen's node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction. Development 113, 1495–1505 (1991).

    CAS  PubMed  Google Scholar 

  19. Storey, K. G., Crossley, J. M., De Robertis, E. M., Norris, W. E. & Stern, C. D. Neural induction and regionalisation in the chick embryo. Development 114, 729–741 (1992).

    CAS  PubMed  Google Scholar 

  20. Beddington, R. S. Induction of a second neural axis by the mouse node. Development 120, 613–620 (1994).

    CAS  PubMed  Google Scholar 

  21. Shih, J. & Fraser, S. E. Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122, 1313–1322 (1996).

    CAS  PubMed  Google Scholar 

  22. Waddington, C. H. Experiments on determination in the rabbit embryo. Arch. Biol. 48, 273–290 (1937).

    Google Scholar 

  23. Knoetgen, H., Teichmann, U., Wittler, L., Viebahn, C. & Kessel, M. Anterior neural induction by nodes from rabbits and mice. Dev. Biol. 225, 370–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Sasai, Y., Lu, B., Steinbeisser, H. & De Robertis, E. M. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Hemmati-Brivanlou, A. & Melton, D. A. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Hemmati-Brivanlou, A., Kelly, O. G. & Melton, D. A. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Lamb, T. M. et al. Neural induction by the secreted polypeptide noggin. Science 262, 713–718 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Grunz, H. & Tacke, L. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ. Dev. 28, 211–217 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Dale, L. & Jones, C. M. BMP signalling in early Xenopus development. Bioessays 21, 751–760 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Hawley, S. H. et al. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9, 2923–2935 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Xu, R. H. et al. A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem. Biophys. Res. Commun. 212, 212–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Fainsod, A., Steinbeisser, H. & De Robertis, E. M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 13, 5015–5025 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hemmati-Brivanlou, A. & Thomsen, G. H. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17, 78–89 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184 (1997).

    CAS  PubMed  Google Scholar 

  36. Suzuki, A., Ueno, N. & Hemmati-Brivanlou, A. Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124, 3037–3044 (1997).

    CAS  PubMed  Google Scholar 

  37. Powers, C. J., McLeskey, S. W. & Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7, 165–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Hongo, I., Kengaku, M. & Okamoto, H. FGF signaling and the anterior neural induction in Xenopus. Dev. Biol. 216, 561–581 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Launay, C., Fromentoux, V., Shi, D. L. & Boucaut, J. C. A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122, 869–880 (1996).

    CAS  PubMed  Google Scholar 

  40. Sasai, Y., Lu, B., Piccolo, S. & De Robertis, E. M. Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15, 4547–4555 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lamb, T. M. & Harland, R. M. Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 121, 3627–3636 (1995).

    CAS  PubMed  Google Scholar 

  42. Kengaku, M. & Okamoto, H. bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121, 3121–3130 (1995).

    CAS  PubMed  Google Scholar 

  43. Kroll, K. L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183 (1996).

    CAS  PubMed  Google Scholar 

  44. Holowacz, T. & Sokol, S. FGF is required for posterior neural patterning but not for neural induction. Dev. Biol. 205, 296–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Ribisi, S. Jr. et al. Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis. Dev. Biol. 227, 183–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Baker, J. C., Beddington, R. S. & Harland, R. M. Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev 13, 3149–3159 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vincent, J. P., Oster, G. F. & Gerhart, J. C. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface. Dev. Biol. 113, 484–500 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Miller, J. R. et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moon, R. T., Brown, J. D. & Torres, M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 13, 157–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Christian, J. L. & Moon, R. T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 13–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C. & Niehrs, C. Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389, 517–519 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Itoh, K., Tang, T. L., Neel, B. G. & Sokol, S. Y. Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase. Development 121, 3979–3988 (1995).

    CAS  PubMed  Google Scholar 

  54. Umbhauer, M., Penzo-Mendez, A., Clavilier, L., Boucaut, J. & Riou, J. Signaling specificities of fibroblast growth factor receptors in early Xenopus embryo. J. Cell Sci. 113, 2865–2875 (2000).

    CAS  PubMed  Google Scholar 

  55. Wessely, O., Agius, E., Oelgeschlager, M., Pera, E. M. & De Robertis, E. M. Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev. Biol. 234, 161–173 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gamse, J. T. & Sive, H. Early anteroposterior division of the presumptive neurectoderm in Xenopus. Mech. Dev. 104, 21–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Penzel, R., Oschwald, R., Chen, Y., Tacke, L. & Grunz, H. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis. Int. J. Dev. Biol. 41, 667–677 (1997).

    CAS  PubMed  Google Scholar 

  58. Mizuseki, K., Kishi, M., Shiota, K., Nakanishi, S. & Sasai, Y. SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron 21, 77–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Kroll, K. L., Salic, A. N., Evans, L. M. & Kirschner, M. W. Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development 125, 3247–3258 (1998).

    CAS  PubMed  Google Scholar 

  60. Zhang, J. & Jacobson, A. G. Evidence that the border of the neural plate may be positioned by the interaction between signals that induce ventral and dorsal mesoderm. Dev. Dyn. 196, 79–90 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Kurata, T., Nakabayashi, J., Yamamoto, T. S., Mochii, M. & Ueno, N. Visualization of endogenous BMP signaling during Xenopus development. Differentiation 67, 33–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Smith, J. L. & Schoenwolf, G. C. Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J. Exp. Zool. 250, 49–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. Sater, A. K. & Jacobson, A. G. The role of the dorsal lip in the induction of heart mesoderm in Xenopus laevis. Development 108, 461–470 (1990).

    CAS  PubMed  Google Scholar 

  64. Davidson, B. P., Kinder, S. J., Steiner, K., Schoenwolf, G. C. & Tam, P. P. Impact of node ablation on the morphogenesis of the body axis and the lateral asymmetry of the mouse embryo during early organogenesis. Dev. Biol. 211, 11–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Pera, E., Stein, S. & Kessel, M. Ectodermal patterning in the avian embryo: epidermis versus neural plate. Development 126, 63–73 (1999).

    CAS  PubMed  Google Scholar 

  66. Sheng, G. & Stern, C. D. Gata2 and Gata3: novel markers for early embryonic polarity and for non-neural ectoderm in the chick embryo. Mech. Dev. 87, 213–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Schier, A. F. & Talbot, W. S. Nodal signaling and the zebrafish organizer. Int. J. Dev. Biol. 45, 289–297 (2001).

    CAS  PubMed  Google Scholar 

  68. Yamaguchi, T. P., Takada, S., Yoshikawa, Y., Wu, N. & McMahon, A. P. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev. 13, 3185–3190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Muhr, J., Graziano, E., Wilson, S., Jessell, T. M. & Edlund, T. Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron 23, 689–702 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Streit, A. & Stern, C. D. Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity. Mech. Dev. 82, 51–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Matzuk, M. M. et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 374, 360–363 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. McMahon, J. A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Levin, M. The roles of activin and follistatin signaling in chick gastrulation. Int. J. Dev. Biol. 42, 553–559 (1998).

    CAS  PubMed  Google Scholar 

  75. Connolly, D. J., Patel, K. & Cooke, J. Chick noggin is expressed in the organizer and neural plate during axial development, but offers no evidence of involvement in primary axis formation. Int. J. Dev. Biol. 41, 389–396 (1997).

    CAS  PubMed  Google Scholar 

  76. Knoetgen, H., Viebahn, C. & Kessel, M. Head induction in the chick by primitive endoderm of mammalian, but not avian origin. Development 126, 815–825 (1999).

    CAS  PubMed  Google Scholar 

  77. Hammerschmidt, M., Serbedzija, G. N. & McMahon, A. P. Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev. 10, 2452–2461 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Fekany-Lee, K., Gonzalez, E., Miller-Bertoglio, V. & Solnica-Krezel, L. The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127, 2333–2345 (2000).

    CAS  PubMed  Google Scholar 

  79. Nguyen, V. H. et al. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev. Biol. 199, 93–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Dick, A. et al. Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 127, 343–354 (2000).

    CAS  PubMed  Google Scholar 

  81. Hild, M. et al. The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development 126, 2149–2159 (1999).

    CAS  PubMed  Google Scholar 

  82. Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl. Acad. Sci. USA 96, 3546–3551 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pera, E. M. & De Robertis, E. M. A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1. Mech. Dev. 96, 183–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Shibata, M., Ono, H., Hikasa, H., Shinga, J. & Taira, M. Xenopus crescent encoding a Frizzled-like domain is expressed in the Spemann organizer and pronephros. Mech. Dev. 96, 243–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Isaacs, H. V., Pownall, M. E. & Slack, J. M. eFGF is expressed in the dorsal midline of Xenopus laevis. Int. J. Dev. Biol. 39, 575–579 (1995).

    CAS  PubMed  Google Scholar 

  86. Hansen, C. S., Marion, C. D., Steele, K., George, S. & Smith, W. C. Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124, 483–492 (1997).

    CAS  PubMed  Google Scholar 

  87. Niehrs, C. Head in the WNT: the molecular nature of Spemann's head organizer. Trends Genet. 15, 314–319 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Stern, C. D. Initial patterning of the central nervous system: how many organizers? Nat. Rev. Neurosci. 2, 92–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Nieuwkoop, P. D. et al. Activation and organization of the central nervous system in amphibians. J. Exp. Zool. 120, 1–108 (1952).

    Article  Google Scholar 

  90. Foley, A. C., Skromne, I. & Stern, C. D. Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127, 3839–3854 (2000).

    CAS  PubMed  Google Scholar 

  91. Kimura, C. et al. Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev. Biol. 225, 304–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Muhr, J., Jessell, T. M. & Edlund, T. Assignment of early caudal identity to neural plate cells by a signal from caudal paraxial mesoderm. Neuron 19, 487–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Fukushima, M., Nakamura, M., Ohta, K., Okamura, R. & Negi, A. Regional specification of motoneurons along the anterior-posterior axis is independent of the notochord. Development 122, 905–914 (1996).

    CAS  PubMed  Google Scholar 

  94. Dale, J. K. et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Martinez Barbera, J. P. et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433–2445 (2000).

    CAS  PubMed  Google Scholar 

  97. Roth, S., Stein, D. & Nusslein-Volhard, C. A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59, 1189–1202 (1989).

    Article  CAS  PubMed  Google Scholar 

  98. St Johnston, R. D. & Gelbart, W. M. Decapentaplegic transcripts are localized along the dorsal-ventral axis of the Drosophila embryo. EMBO J. 6, 2785–2791 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.E. is supported by the Swedish Medical Research Council and by the Foundation for Strategic Research. We thank members of the Edlund lab for helpful discussions and we are grateful to T.M. Jessell for comments, suggestions and ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Edlund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, S., Edlund, T. Neural induction: toward a unifying mechanism. Nat Neurosci 4 (Suppl 11), 1161–1168 (2001). https://doi.org/10.1038/nn747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing