Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cortical interference effects in the cocktail party problem

Abstract

Humans and animals must often discriminate between complex natural sounds in the presence of competing sounds (maskers). Although the auditory cortex is thought to be important in this task, the impact of maskers on cortical discrimination remains poorly understood. We examined neural responses in zebra finch (Taeniopygia guttata) field L (homologous to primary auditory cortex) to target birdsongs that were embedded in three different maskers (broadband noise, modulated noise and birdsong chorus). We found two distinct forms of interference in the neural responses: the addition of spurious spikes occurring primarily during the silent gaps between song syllables and the suppression of informative spikes occurring primarily during the syllables. Both effects systematically degraded neural discrimination as the target intensity decreased relative to that of the masker. The behavioral performance of songbirds degraded in a parallel manner. Our results identify neural interference that could explain the perceptual interference at the heart of the cocktail party problem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Target and masker stimuli.
Figure 2: Neural responses to targets in the presence of maskers.
Figure 3: Neural discrimination under different masking conditions.
Figure 4: Neural versus behavioral performance.

Similar content being viewed by others

References

  1. Hulse, S.H., MacDougall-Shackleton, S.A. & Wisniewski, A.B. Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris). J. Comp. Psychol. 111, 3–13 (1997).

    Article  CAS  Google Scholar 

  2. Endepols, H., Feng, A.S., Gerhardt, H.C., Schul, J. & Walkowiak, W. Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray tree frogs (Hyla versicolor). Behav. Brain Res. 145, 63–77 (2003).

    Article  Google Scholar 

  3. Cherry, E.C. Some experiments on the recognition of speech, with one and with two Ears. J. Acoust. Soc. Am. 25, 975–979 (1953).

    Article  Google Scholar 

  4. Bronkhorst, A.W. The cocktail party phenomenon: a review of research on speech intelligibility in multiple-talker conditions. Acustica 86, 694–703 (2000).

    Google Scholar 

  5. Asari, H., Pearlmutter, B.A. & Zador, A.M. Sparse representations for the cocktail party problem. J. Neurosci. 26, 7477–7490 (2006).

    Article  CAS  Google Scholar 

  6. Haykin, S. & Chen, Z. The cocktail party problem. Neural Comput. 17, 1875–1902 (2005).

    Article  Google Scholar 

  7. Bronkhorst, A.W. & Plomp, R. Effect of multiple speech-like maskers on binaural speech recognition in normal and impaired hearing. J. Acoust. Soc. Am. 92, 3132–3139 (1992).

    Article  CAS  Google Scholar 

  8. Brungart, D.S., Simpson, B.D., Ericson, M.A. & Scott, K.R. Informational and energetic masking effects in the perception of multiple simultaneous talkers. J. Acoust. Soc. Am. 110, 2527–2538 (2001).

    Article  CAS  Google Scholar 

  9. Kidd, G., Jr, Mason, C.R., Rohtla, T.L. & Deliwala, P.S. Release from masking due to spatial separation of sources in the identification of nonspeech auditory patterns. J. Acoust. Soc. Am. 104, 422–431 (1998).

    Article  Google Scholar 

  10. Bar-Yosef, O., Rotman, Y. & Nelken, I. Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J. Neurosci. 22, 8619–8632 (2002).

    Article  CAS  Google Scholar 

  11. Narayan, R., Grana, G. & Sen, K. Distinct time scales in cortical discrimination of natural sounds in songbirds. J. Neurophysiol. 96, 252–258 (2006).

    Article  Google Scholar 

  12. Nelken, I. Processing of complex stimuli and natural scenes in the auditory cortex. Curr. Opin. Neurobiol. 14, 474–480 (2004).

    Article  CAS  Google Scholar 

  13. Wang, L., Narayan, R., Grana, G., Shamir, M. & Sen, K. Cortical discrimination of complex natural stimuli: can single neurons match behavior? J. Neurosci. 27, 582–589 (2007).

    Article  CAS  Google Scholar 

  14. Doupe, A.J. & Kuhl, P.K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    Article  CAS  Google Scholar 

  15. Grace, J.A., Amin, N., Singh, N.C. & Theunissen, F.E. Selectivity for conspecific song in the zebra finch auditory forebrain. J. Neurophysiol. 89, 472–487 (2003).

    Article  Google Scholar 

  16. Woolley, S.M., Fremouw, T.E., Hsu, A. & Theunissen, F.E. Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nat. Neurosci. 8, 1371–1379 (2005).

    Article  CAS  Google Scholar 

  17. Best, V., Ozmeral, E., Gallun, F.J., Sen, K. & Shinn-Cunningham, B.G. Spatial unmasking of birdsong in human listeners: energetic and informational factors. J. Acoust. Soc. Am. 118, 3766–3773 (2005).

    Article  Google Scholar 

  18. Appeltants, D., Gentner, T.Q., Hulse, S.H., Balthazart, J. & Ball, G.F. The effect of auditory distractors on song discrimination in male canaries (Serinus canaria). Behav. Processes 69, 331–341 (2005).

    Article  Google Scholar 

  19. Carhart, R., Tillman, T.W. & Greetis, E.S. Perceptual masking in multiple sound backgrounds. J. Acoust. Soc. Am. 45, 694–703 (1969).

    Article  CAS  Google Scholar 

  20. Fitch, R.H., Miller, S. & Tallal, P. Neurobiology of speech perception. Annu. Rev. Neurosci. 20, 331–353 (1997).

    Article  CAS  Google Scholar 

  21. Rauschecker, J.P. Cortical processing of complex sounds. Curr. Opin. Neurobiol. 8, 516–521 (1998).

    Article  CAS  Google Scholar 

  22. Langner, G., Bonke, D. & Scheich, H. Neuronal discrimination of natural and synthetic vowels in field L of trained mynah birds. Exp. Brain Res. 43, 11–24 (1981).

    Article  CAS  Google Scholar 

  23. Lewicki, M.S. & Arthur, B.J. Hierarchical organization of auditory temporal context sensitivity. J. Neurosci. 16, 6987–6998 (1996).

    Article  CAS  Google Scholar 

  24. Muller, C.M. & Leppelsack, H.J. Feature extraction and tonotopic organization in the avian auditory forebrain. Exp. Brain Res. 59, 587–599 (1985).

    Article  CAS  Google Scholar 

  25. Scheich, H., Langner, G. & Bonke, D. Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. II. Discrimination of Iambus-like calls. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 132, 257–276 (1979b).

    Article  Google Scholar 

  26. Sen, K., Theunissen, F.E. & Doupe, A.J. Feature analysis of natural sounds in the songbird auditory forebrain. J. Neurophysiol. 86, 1445–1458 (2001).

    Article  CAS  Google Scholar 

  27. Theunissen, F.E., Sen, K. & Doupe, A.J. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J. Neurosci. 20, 2315–2331 (2000).

    Article  CAS  Google Scholar 

  28. Nelken, I., Fishbach, A., Las, L., Ulanovsky, N. & Farkas, D. Primary auditory cortex of cats: feature detection or something else? Biol. Cybern. 89, 397–406 (2003).

    Article  Google Scholar 

  29. Verhey, J.L., Pressnitzer, D. & Winter, I.M. The psychophysics and physiology of comodulation masking release. Exp. Brain Res. 153, 405–417 (2003).

    Article  Google Scholar 

  30. McAlpine, D., Jiang, D. & Palmer, A.R. Binaural masking level differences in the inferior colliculus of the guinea pig. J. Acoust. Soc. Am. 100, 490–503 (1996).

    Article  CAS  Google Scholar 

  31. Jiang, D., McAlpine, D. & Palmer, A.R. Responses of neurons in the inferior colliculus to binaural masking level difference stimuli measured by rate-versus-level functions. J. Neurophysiol. 77, 3085–3106 (1997).

    Article  CAS  Google Scholar 

  32. Ratnam, R. & Feng, A.S. Detection of auditory signals by frog inferior collicular neurons in the presence of spatially separated noise. J. Neurophysiol. 80, 2848–2859 (1998).

    Article  CAS  Google Scholar 

  33. Palmer, A.R., Jiang, D. & McAlpine, D. Desynchronizing responses to correlated noise: a mechanism for binaural masking level differences at the inferior colliculus. J. Neurophysiol. 81, 722–734 (1999).

    Article  CAS  Google Scholar 

  34. Lin, W.Y. & Feng, A.S. Free-field unmasking response characteristics of frog auditory nerve fibers: comparison with the responses of midbrain auditory neurons. J. Comp. Physiol. [A] 187, 699–712 (2001).

    Article  CAS  Google Scholar 

  35. Pressnitzer, D., Meddis, R., Delahaye, R. & Winter, I.M. Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. J. Neurosci. 21, 6377–6386 (2001).

    Article  CAS  Google Scholar 

  36. Neuert, V., Verhey, J.L. & Winter, I.M. Responses of dorsal cochlear nucleus neurons to signals in the presence of modulated maskers. J. Neurosci. 24, 5789–5797 (2004).

    Article  CAS  Google Scholar 

  37. Lane, C.C. & Delgutte, B. Neural correlates and mechanisms of spatial release from masking: single-unit and population responses in the inferior colliculus. J. Neurophysiol. 94, 1180–1198 (2005).

    Article  Google Scholar 

  38. Ramachandran, R., Davis, K.A. & May, B.J. Rate representation of tones in noise in the inferior colliculus of decerebrate cats. J. Assoc. Res. Otolaryngol. 1, 144–160 (2000).

    Article  CAS  Google Scholar 

  39. Las, L., Stern, E.A. & Nelken, I. Representation of tone in fluctuating maskers in the ascending auditory system. J. Neurosci. 25, 1503–1513 (2005).

    Article  CAS  Google Scholar 

  40. Phillips, D.P. & Cynader, M.S. Some neural mechanisms in the cat's auditory cortex underlying sensitivity to combined tone and wide-spectrum noise stimuli. Hear. Res. 18, 87–102 (1985).

    Article  CAS  Google Scholar 

  41. Nelken, I., Rotman, Y. & Bar Yosef, O. Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397, 154–157 (1999).

    Article  CAS  Google Scholar 

  42. Furukawa, S., Xu, L. & Middlebrooks, J.C. Coding of sound-source location by ensembles of cortical neurons. J. Neurosci. 20, 1216–1228 (2000).

    Article  CAS  Google Scholar 

  43. Nieder, A. & Klump, G.M. Signal detection in amplitude-modulated maskers. II. Processing in the songbird's auditory forebrain. Eur. J. Neurosci. 13, 1033–1044 (2001).

    Article  CAS  Google Scholar 

  44. Hofer, S.B. & Klump, G.M. Within- and across-channel processing in auditory masking: a physiological study in the songbird forebrain. J. Neurosci. 23, 5732–5739 (2003).

    Article  CAS  Google Scholar 

  45. Machens, C.K., Wehr, M.S. & Zador, A.M. Linearity of cortical receptive fields measured with natural sounds. J. Neurosci. 24, 1089–1100 (2004).

    Article  CAS  Google Scholar 

  46. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  47. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nat. Rev. Neurosci. 4, 203–218 (2003).

    Article  CAS  Google Scholar 

  48. Fortune, E.S. & Margoliash, D. Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata). J. Comp. Neurol. 325, 388–404 (1992).

    Article  CAS  Google Scholar 

  49. van Rossum, M.C. A novel spike distance. Neural Comput. 13, 751–763 (2001).

    Article  CAS  Google Scholar 

  50. Machens, C.K. et al. Single auditory neurons rapidly discriminate conspecific communication signals. Nat. Neurosci. 6, 341–342 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institute on Deafness and Other Communication Disorders grant 1 RO1 DC–007610–01A1 (K.S.), the Deafness Research Foundation and the National Organization for Hearing Research Foundation (M.D.), and the Air Force Office of Scientific Research grant FA9550–04–1–0260 (B.S.-C.).

Author information

Authors and Affiliations

Authors

Contributions

K.S., B.S.-C., M.D., R.N., V.B and E.O. designed the research. R.N. carried out the neurophysiology experiments and analyzed the neural data. V.B. analyzed the behavioral data and assisted in the neurophysiology experiments. E.O. generated stimuli and assisted in the neurophysiology experiments. E.M. and M.D. carried out the behavioral experiments. M.D. supervised the behavioral experiments. K.S. supervised the neurophysiology experiments. K.S., V.B. and R.N. wrote the manuscript.

Corresponding author

Correspondence to Kamal Sen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, R., Best, V., Ozmeral, E. et al. Cortical interference effects in the cocktail party problem. Nat Neurosci 10, 1601–1607 (2007). https://doi.org/10.1038/nn2009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing