Increased structural connectivity in grapheme-color synesthesia


Diffusion tensor imaging allowed us to validate for the first time the hypothesis that hyperconnectivity causes the added sensations in synesthesia. Grapheme-color synesthetes (n = 18), who experience specific colors with particular letters or numbers (for example, 'R is sky blue'), showed greater anisotropic diffusion compared with matched controls. Greater anisotropic diffusion indicates more coherent white matter. Anisotropy furthermore differentiated subtypes of grapheme-color synesthesia. Greater connectivity in the inferior temporal cortex was particularly strong for synesthetes who see synesthetic color in the outside world ('projectors') as compared with synesthetes who see the color in their 'mind's eye' only ('associators'). In contrast, greater connectivity (as compared with non-synesthetes) in the superior parietal or frontal cortex did not differentiate between subtypes of synesthesia. In conclusion, we found evidence that increased structural connectivity is associated with the presence of grapheme-color synesthesia, and has a role in the subjective nature of synesthetic color experience.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Increased anisotropy in synesthetes as compared with non-synesthetes.
Figure 2: Increased brain activation and increased anisotropy in the inferior temporal cortex in grapheme-color synesthetes.
Figure 3: Anisotropy differentiates subtypes of grapheme-color synesthesia.


  1. 1

    Baron-Cohen, S., Burt, L., Smith-Laittan, F., Harrison, J. & Bolton, P. Synaesthesia: prevalence and familiality. Perception 25, 1073–1079 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Day, S.A. Some demographic and socio-cultural aspects of synesthesia. In Synesthesia: Perspectives from Cognitive Neuroscience (eds. Robertson, L. & Sagiv, N.) Ch. 2, 11–33 (Oxford University Press, Oxford, 2005).

    Google Scholar 

  3. 3

    Hubbard, E.M. & Ramachandran, V.S. Neurocognitive mechanisms of synesthesia. Neuron 48, 509–520 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Ramachandran, V.S. & Hubbard, E.M. Psychophysical investigations into the neural basis of synaesthesia. Proc. R. Soc. Lond. B 268, 979–983 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Mondloch, C.J. & Maurer, D. Do small white balls squeak? Pitch-object correspondences in young children. Cogn. Affect. Behav. Neurosci. 4, 133–136 (2004).

    Article  Google Scholar 

  6. 6

    Hubbard, E.M., Arman, A.C., Ramachandran, V.S. & Boynton, G.M. Individual differences among grapheme-color synesthetes: brain-behavior correlations. Neuron 45, 975–985 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Ramachandran, V.S. & Hubbard, E.M. Synaesthesia: a window into perception, thought and language. J. Conscious. Stud. 8, 3–34 (2001).

    Google Scholar 

  8. 8

    Smilek, D., Dixon, M.J., Cuday, C. & Merikle, P.M. Synaesthetic photisms influence visual perception. J. Cogn. Neurosci. 13, 930–936 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Grossenbacher, P.G. & Lovelace, C.T. Mechanisms of synesthesia: cognitive and physiological constraints. Trends Cogn. Sci. 5, 36–41 (2001).

    Article  Google Scholar 

  10. 10

    Esterman, M., Verstynen, T., Ivry, R.B. & Robertson, L.C. Coming unbound: disrupting automatic integration of synesthetic color and graphemes by transcranial magnetic stimulation of the right parietal lobe. J. Cogn. Neurosci. 18, 1570–1576 (2006).

    Article  Google Scholar 

  11. 11

    Weiss, P.H., Zilles, K. & Fink, G.R. When visual perception causes feeling: enhanced cross-modal processing grapheme-color synesthesia. Neuroimage 28, 859–868 (2005).

    Article  Google Scholar 

  12. 12

    Basser, P.J., Mattiello, J. & LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B. 103, 247–254 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Basser, P.J. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 8, 333–344 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Ward, J. & Mattingley, J. (eds.) Cognitive neuroscience perspectives on synaesthesia. Cortex 42 (special issue) (2006).

  15. 15

    Dixon, M.J. & Smilek, D. The importance of individual differences in grapheme-color synesthesia. Neuron 45, 821–823 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Dixon, M.J., Smilek, D. & Merikle, P.M. Not all synaesthetes are created equal: projector versus associator synaesthetes. Cogn. Affect. Behav. Neurosci 4, 335–343 (2004).

    Article  Google Scholar 

  17. 17

    Ishai, A., Ungerleider, L.G., Martin, A., Schouten, J.L. & Haxby, J.V. Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. USA 96, 9379–9384 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Martin, A., Wiggs, C.L., Ungerleider, L.G. & Haxby, J.V. Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Cohen, L. et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123, 291–307 (2000).

    Article  Google Scholar 

  21. 21

    McKeefry, D.J. & Zeki, S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120, 2229–2242 (1997).

    Article  Google Scholar 

  22. 22

    Smith, S.M. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006).

    Article  Google Scholar 

  23. 23

    Nichols, T.E. & Holmes, A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).

    Article  Google Scholar 

  24. 24

    Catani, M., Jones, D.K., Donato, R. & Ffytche, D.H. Occipito-temporal connections in the human brain. Brain 126, 2093–2107 (2003).

    Article  Google Scholar 

  25. 25

    Evans, A.C.,, Collins, D.L. & Milner, B. An MRI-based stereotactic atlas from 250 young normal subjects. Soc. Neurosci. Abstr. 18, 408 (1992).

    Google Scholar 

  26. 26

    Duncan, R.O. & Boynton, G.M. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38, 659–671 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Nunn, J.A. et al. Functional magnetic resonance imaging of synesthesia: activation of V4/V8 by spoken words. Nat. Neurosci. 5, 371–375 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Sperling, J.M., Pruvolic, D., Linden, D.E.J., Singer, W. & Stirn, A. Neuronal correlates of colour-graphemic synaesthesia: a fMRI study. Cortex 42, 295–303 (2006).

    Article  Google Scholar 

  29. 29

    Friedman-Hill, S.R., Robertson, L. & Treisman, A. Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science 269, 853–855 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Paulesu, E. et al. The physiology of coloured hearing. A PET activation study of colour-word synaesthesia. Brain 118, 661–676 (1995).

    Article  Google Scholar 

  31. 31

    Muggleton, N., Tsakanikos, E., Walsh, V. & Ward, J. Disruption of synaesthesia following TMS of the right posterior parietal cortex. Neuropsychologia 45, 1582–1585 (2007).

    Article  Google Scholar 

  32. 32

    Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Dehaene, S. et al. Cerebral mechanisms of word masking and unconscious repetition priming. Nat. Neurosci. 4, 752–758 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nat. Rev. Neurosci. 3, 261–270 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Lumer, E.D., Friston, K.J. & Rees, G. Neuronal correlates of perceptual rivalry in the human brain. Science 280, 1930–1934 (1998).

    CAS  Article  Google Scholar 

  36. 36

    Lumer, E.D. & Rees, G.E. Covariation of activity in visual and prefrontal cortex associated with subjective visual perception. Proc. Natl. Acad. Sci. USA 96, 1669–1673 (1999).

    CAS  Article  Google Scholar 

  37. 37

    Kleinschmidt, A., Buchel, C., Zeki, S. & Frackowiak, R.S.J. Human brain activity during spontaneously reversing perception of ambiguous figures. Proc. R. Soc. Lond. B 265, 2427–2433 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Smith, S.M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).

    Article  Google Scholar 

  39. 39

    Behrens, T.E.J. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

    Article  Google Scholar 

  41. 41

    Rueckert, D. et al. Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18, 712–721 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Woolrich, M.W., Ripley, B.D., Brady, J.M. & Smith, S.M. Temporal autocorrelation in univariate linear modelling of FMRI data. Neuroimage 14, 1370–1386 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Beckmann, C.F., Jenkinson, M. & Smith, S.M. General multi-level linear modelling for group analysis in FMRI. Neuroimage 20, 1052–1063 (2003).

    Article  Google Scholar 

  44. 44

    Woolrich, M.W., Behrens, T.E.J., Beckmann, C.F., Jenkinson, M. & Smith, S.M. Multi-level linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21, 1732–1747 (2004).

    Article  Google Scholar 

  45. 45

    Worsley, K.J., Marrett, S., Neelin, P. & Evans, A.C. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900–918 (1992).

    CAS  Article  Google Scholar 

Download references


We thank I. Veer, M. Hillen, L. Zil, N. Rusiyanadi, F. van Klaveren and F. Binkhorst for their contribution to testing; all the synesthetic and control subjects for their enthusiastic collaboration; and B. Laeng and V. Lamme for their comments.

Author information



Corresponding author

Correspondence to Romke Rouw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Main directions of white matter tracts in synesthetes and controls. (PDF 230 kb)

Supplementary Fig. 2

White matter tracts in synesthetes and controls. (PDF 848 kb)

Supplementary Table 1

Correlation matrix (nonparametric) of projector-associator score, FA values in the four clusters differentiating synesthetes from non-synesthetes, and BOLD signal in the four areas responding to synesthetic color in synesthetes. (PDF 57 kb)

Supplementary Table 2

Correlations between FA in inferior temporal cluster and BOLD signal in the anterior cluster in temporal cortex responding to synesthetic color, for synesthetes and non-synesthetes separately. (PDF 58 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rouw, R., Scholte, H. Increased structural connectivity in grapheme-color synesthesia. Nat Neurosci 10, 792–797 (2007).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing