Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development


Myelinating oligodendrocytes arise from migratory and proliferative oligodendrocyte progenitor cells (OPCs). Complete myelination requires that oligodendrocytes be uniformly distributed and form numerous, periodically spaced membrane sheaths along the entire length of target axons. Mechanisms that determine spacing of oligodendrocytes and their myelinating processes are not known. Using in vivo time-lapse confocal microscopy, we show that zebrafish OPCs continuously extend and retract numerous filopodium-like processes as they migrate and settle into their final positions. Process remodeling and migration paths are highly variable and seem to be influenced by contact with neighboring OPCs. After laser ablation of oligodendrocyte-lineage cells, nearby OPCs divide more frequently, orient processes toward the ablated cells and migrate to fill the unoccupied space. Thus, process activity before axon wrapping might serve as a surveillance mechanism by which OPCs determine the presence or absence of nearby oligodendrocyte-lineage cells, facilitating uniform spacing of oligodendrocytes and complete myelination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: OPC migration in zebrafish spinal cord.
Figure 2: OPC processes are rapidly and extensively remodeled.
Figure 3: OPC migration is variable in direction and distance.
Figure 4: OPC processes retract after contact.
Figure 5: OPCs divide and migrate to replace ablated cells.


  1. 1

    Baumann, N. & Pham-Dinh, D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 81, 871–927 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Pfeiffer, S.E., Warrington, A.E. & Bansal, R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3, 191–197 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Miller, R.H. Regulation of oligodendrocyte development in the vertebrate CNS. Prog. Neurobiol. 67, 451–467 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Franklin, R.J. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705–714 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Ng, A.N. et al. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114–135 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Dutton, K.A. et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128, 4113–4125 (2001).

    CAS  Google Scholar 

  8. 8

    Shin, J., Park, H.C., Topczewska, J.M., Mawdsley, D.J. & Appel, B. Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci. 25, 7–14 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Cai, J. et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of nkx6 regulation and shh signaling. Neuron 45, 41–53 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Vallstedt, A., Klos, J.M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Fogarty, M., Richardson, W.D. & Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951–1959 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Yue, T. et al. A critical role for dorsal progenitors in cortical myelination. J. Neurosci. 26, 1275–1280 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Barres, B.A. & Raff, M.C. Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12, 935–942 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Baron, W., Colognato, H. & Ffrench-Constant, C. Integrin-growth factor interactions as regulators of oligodendroglial development and function. Glia 49, 467–479 (2005).

    Article  Google Scholar 

  15. 15

    Hardy, R.J. & Friedrich, V.L., Jr. Progressive remodeling of the oligodendrocyte process arbor during myelinogenesis. Dev. Neurosci. 18, 243–254 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Kachar, B., Behar, T. & Dubois-Dalcq, M. Cell shape and motility of oligodendrocytes cultured without neurons. Cell Tissue Res. 244, 27–38 (1986).

    CAS  Article  Google Scholar 

  17. 17

    Milner, R., Edwards, G., Streuli, C. & Ffrench-Constant, C. A role in migration for the alpha V beta 1 integrin expressed on oligodendrocyte precursors. J. Neurosci. 16, 7240–7252 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Schmidt, C. et al. Analysis of motile oligodendrocyte precursor cells in vitro and in brain slices. Glia 20, 284–298 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Simpson, P.B. & Armstrong, R.C. Intracellular signals and cytoskeletal elements involved in oligodendrocyte progenitor migration. Glia 26, 22–35 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Tsai, H.H., Macklin, W.B. & Miller, R.H. Netrin-1 is required for the normal development of spinal cord oligodendrocytes. J. Neurosci. 26, 1913–1922 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Fox, M.A., Afshari, F.S., Alexander, J.K., Colello, R.J. & Fuss, B. Growth conelike sensorimotor structures are characteristic features of postmigratory, premyelinating oligodendrocytes. Glia 53, 563–566 (2006).

    Article  Google Scholar 

  22. 22

    de Castro, F. & Bribian, A. The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res. Brain Res. Rev. 49, 227–241 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Barallobre, M.J., Pascual, M., Del Rio, J.A. & Soriano, E. The Netrin family of guidance factors: emphasis on Netrin-1 signalling. Brain Res. Brain Res. Rev. 49, 22–47 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Sugimoto, Y. et al. Guidance of glial precursor cell migration by secreted cues in the developing optic nerve. Development 128, 3321–3330 (2001).

    CAS  PubMed  Google Scholar 

  25. 25

    Jarjour, A.A. et al. Netrin-1 is a chemorepellent for oligodendrocyte precursor cells in the embryonic spinal cord. J. Neurosci. 23, 3735–3744 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Tsai, H.H., Tessier-Lavigne, M. & Miller, R.H. Netrin 1 mediates spinal cord oligodendrocyte precursor dispersal. Development 130, 2095–2105 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Zhang, H., Vutskits, L., Calaora, V., Durbec, P. & Kiss, J.Z. A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J. Cell Sci. 117, 93–103 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Milner, R. et al. Contrasting effects of mitogenic growth factors on oligodendrocyte precursor cell migration. Glia 19, 85–90 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Noble, M., Murray, K., Stroobant, P., Waterfield, M.D. & Riddle, P. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333, 560–562 (1988).

    CAS  Article  Google Scholar 

  30. 30

    Raff, M.C., Lillien, L.E., Richardson, W.D., Burne, J.F. & Noble, M.D. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333, 562–565 (1988).

    CAS  Article  Google Scholar 

  31. 31

    Richardson, W.D., Pringle, N., Mosley, M.J., Westermark, B. & Dubois-Dalcq, M. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53, 309–319 (1988).

    CAS  Article  Google Scholar 

  32. 32

    Calver, A.R. et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20, 869–882 (1998).

    CAS  Article  Google Scholar 

  33. 33

    Fruttiger, M. et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126, 457–467 (1999).

    CAS  PubMed  Google Scholar 

  34. 34

    Milner, R. & Ffrench-Constant, C. A developmental analysis of oligodendroglial integrins in primary cells: changes in alpha v-associated beta subunits during differentiation. Development 120, 3497–3506 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Milner, R. et al. Expression of alpha vbeta3 and alpha vbeta8 integrins during oligodendrocyte precursor differentiation in the presence and absence of axons. Glia 21, 350–360 (1997).

    CAS  Article  Google Scholar 

  36. 36

    Blaschuk, K.L., Frost, E.E. & Ffrench-Constant, C. The regulation of proliferation and differentiation in oligodendrocyte progenitor cells by alphaV integrins. Development 127, 1961–1969 (2000).

    CAS  PubMed  Google Scholar 

  37. 37

    Redwine, J.M. & Armstrong, R.C. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J. Neurobiol. 37, 413–428 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Levine, J.M. & Reynolds, R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp. Neurol. 160, 333–347 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Scolding, N. et al. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121, 2221–2228 (1998).

    Article  Google Scholar 

  40. 40

    Wolswijk, G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J. Neurosci. 18, 601–609 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Wolswijk, G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 123, 105–115 (2000).

    Article  Google Scholar 

  42. 42

    Maeda, Y. et al. Platelet-derived growth factor-alpha receptor-positive oligodendroglia are frequent in multiple sclerosis lesions. Ann. Neurol. 49, 776–785 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Chang, A., Tourtellotte, W.W., Rudick, R. & Trapp, B.D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–173 (2002).

    Article  Google Scholar 

  44. 44

    van Heyningen, P., Calver, A.R. & Richardson, W.D. Control of progenitor cell number by mitogen supply and demand. Curr. Biol. 11, 232–241 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Zhang, H. & Miller, R.H. Density-dependent feedback inhibition of oligodendrocyte precursor expansion. J. Neurosci. 16, 6886–6895 (1996).

    CAS  Article  Google Scholar 

  46. 46

    Nelson, P.J. & Daniel, T.O. Emerging targets: Molecular mechanisms of cell contact-mediated growth control. Kidney Int. 61, 99–105 (2002).

    Article  Google Scholar 

  47. 47

    Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    CAS  Article  Google Scholar 

  48. 48

    Benediktsson, A.M., Schachtele, S.J., Green, S.H. & Dailey, M.E. Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J. Neurosci. Methods 141, 41–53 (2005).

    Article  Google Scholar 

  49. 49

    Bushong, E.A., Martone, M.E., Jones, Y.Z. & Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002).

    CAS  Article  Google Scholar 

  50. 50

    Thermes, V. et al. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 118, 91–98 (2002).

    CAS  Article  Google Scholar 

Download references


Thanks to B. Carter for comments on the manuscript. This work was supported by US National Institutes of Health grant NS046668, National Multiple Sclerosis Foundation grant RG 3420 and a zebrafish initiative funded by the Vanderbilt University Academic Venture Capital Fund.

Author information




B.B.K. produced the migration data shown in Figure 1 and Figure 3 and the movie from which Figure 4a was obtained. N.T. produced the process activity data shown in Figure 2 and Figure 4b and the Tg(nkx2.2a:megfp) ablation data shown in Figure 5f. A.J.L. performed the Tg(olig2:egfp) ablations shown in Figure 5a–e. J.S. created the Tg(olig2:egfp) and Tg(nkx2.2:megfp) transgenic lines. T.J.C. and R.N.K. cloned and characterized the sox10 promoter fragment. B.A. supervised the experiments and wrote the manuscript.

Corresponding author

Correspondence to Bruce Appel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Excerpt from a 36-h time-lapse of a Tg(nkx2.2a:megfp) embryo showing migratory behavior of OPCs and extension and retraction of filopodium-like processes. The images are from the side, focused on a portion of the trunk spinal cord. Dorsal is up and anterior left. EGFP expression also marks axons that descend from the hindbrain. Sequence shown begins at 46 hpf and ends at 68 hpf. Images were collected every 3 min, and the movie runs at 10 frames per second. (MOV 50688 kb)

Supplementary Video 2

Time-lapse sequence taken from the spinal cord of a Tg(nkx2.2a:megfp) embryo injected with p7.2sox10:mrfp plasmid. OPCs are green only (mEGFP+), red only (mRFP+) or yellow (mEGFP+ + mRFP+) because nkx2.2a:mEGFP expression marks a subset of OPCs, and injected DNA is distributed mosaically. Differentially labeled OPC processes interdigitate and withdraw. Images were collected every 1.5 min, and the movie runs at 5 frames per second. Dorsal is up and anterior is to the left. (MOV 24782 kb)

Supplementary Video 3

Time-lapse sequence following laser ablation of migrated EGFP+ oligodendrocyte lineage cells in hemisegments 6–10 of a 4-dpf Tg(olig2:egfp) larva. EGFP+ OPCs in adjacent hemisegments divide and migrate into region where dorsal oligodendrocyte lineage cells were ablated. Dorsal is up and anterior left. Time-lapse begins approximately 1.5 h following ablation and ends 14 h later. Images were acquired every 5 min, and the movie runs at 5 frames per second. Scale bar equals 48 μm. (MOV 11036 kb)

Supplementary Video 4

Time-lapse sequence of a 2-dpf Tg(nkx2.2a:megfp) embryo following ablation of three dorsally migrated EGFP+ OPCs. Nearby OPCs in dorsal and ventral spinal cord extend multiple processes into the ablated region and migrate into the area. Images were collected every 2 min, and the movie runs at 5 frames per second. Dorsal is up and anterior left. (MOV 22861 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kirby, B., Takada, N., Latimer, A. et al. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 9, 1506–1511 (2006).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing