Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-dependent synaptic capture of transiting peptidergic vesicles

Abstract

Synapses require resources synthesized in the neuronal soma, but there are no known mechanisms to overcome delays associated with the synthesis and axonal transport of new proteins generated in response to activity, or to direct resources specifically to active synapses. Here, in vivo imaging of the Drosophila melanogaster neuromuscular junction reveals a cell-biological strategy that addresses these constraints. Peptidergic vesicles continually transit through resting terminals, but retrograde peptidergic vesicle flux is accessed following activity to rapidly boost neuropeptide content in synaptic boutons. The presence of excess transiting vesicles implies that synaptic neuropeptide stores are limited by the capture of peptidergic vesicles at the terminal, rather than by synthesis in the soma or delivery via the axon. Furthermore, activity-dependent capture from a pool of transiting vesicles provides a nerve terminal–based mechanism for directing distally and slowly generated resources quickly to active synapses. Finally, retrograde transport in the nerve terminal is regulated by activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anterograde and retrograde transiting of DCVs.
Figure 2: Activity-induced neuropeptide accumulation in synaptic boutons.
Figure 3: Activity-dependent synaptic capture of DCVs.
Figure 4: Capture is reversible and repeatable.

Similar content being viewed by others

References

  1. Zupanc, G.K. Peptidergic transmission: from morphological correlates to functional implications. Micron 27, 35–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Burbach, J.P., Luckman, S.M., Murphy, D. & Gainer, H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol. Rev. 81, 1197–1267 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Taghert, P.H. & Veenstra, J.A. Drosophila neuropeptide signaling. Adv. Genet. 49, 1–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Nassel, D.R. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog. Neurobiol. 68, 1–84 (2002).

    Article  PubMed  Google Scholar 

  5. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Zhai, R.G. et al. Assembling the presynaptic active zone: a characterization of an active zone precursor vesicle. Neuron 29, 131–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lessmann, V., Gottmann, K. & Malcangio, M. Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol. 69, 341–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Pierce, J.P. & Milner, T.A. Parallel increases in synaptic and surface areas of mossy fiber terminals following seizure induction. Synapse 39, 249–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Murthy, V.N., Schikorski, T., Stevens, C.F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, A. Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J. Cell Biol. 160, 817–821 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shakiryanova, D., Tully, A., Hewes, R.S., Deitcher, D.L. & Levitan, E.S. Activity-dependent liberation of synaptic neuropeptide vesicles. Nat. Neurosci. 8, 173–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Rao, S., Lang, C., Levitan, E.S. & Deitcher, D.L. Visualization of neuropeptide expression, transport, and exocytosis in Drosophila melanogaster. J. Neurobiol. 49, 159–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Heifetz, Y. & Wolfner, M.F. Mating, seminal fluid components, and sperm cause changes in vesicle release in the Drosophila female reproductive tract. Proc. Natl. Acad. Sci. USA 101, 6261–6266 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Husain, Q.M. & Ewer, J. Use of targetable GFP-tagged neuropeptide for visualizing neuropeptide release following execution of a behavior. J. Neurobiol. 59, 181–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Mudher, A. et al. GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol. Psych. 9, 522–530 (2004).

    Article  CAS  Google Scholar 

  16. Sturman, D.A, Shakiryanova, D., Hewes, R.S., Deitcher, D.L. & Levitan, E.S. Nearly neutral secretory vesicles in Drosophila nerve terminals. Biophys. J. 90, L45–L47 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atwood, H.L., Govind, C.K. & Wu, C.F. Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J. Neurobiol. 24, 1008–1024 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Jia, X.X., Gorczyca, M. & Budnik, V. Ultrastructure of neuromuscular junctions in Drosophila: comparison of wild type and mutants with increased excitability. J. Neurobiol. 24, 1025–1044 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levitan, E.S. Studying neuronal peptide release and secretory granule dynamics with green fluorescent protein. Methods 16, 182–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Krueger, S.R., Kolar, A. & Fitzsimonds, R.M. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron 40, 945–957 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Darcy, K.J., Staras, K., Collinson, L.M. & Goda, Y. Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat. Neurosci. 9, 315–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Neubig, R. The time course of drug action. in Principles of Drug Action. 3rd edn. (eds. Pratt, W.B. & Taylor, P.) 311–313 (Churchill-Livingstone, London, 1990).

    Google Scholar 

Download references

Acknowledgements

We thank W.C. DeGroat and K. Kandler for their comments. This research was supported by grant NS32385 from the US National Institutes of Health to E.S.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin S Levitan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Constitutive replacement of synaptic DCVs is slow. (PDF 137 kb)

Supplementary Fig. 2

Detection of vesicle shipments. (PDF 73 kb)

Supplementary Fig. 3

Movement of vesicle shipments. (PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakiryanova, D., Tully, A. & Levitan, E. Activity-dependent synaptic capture of transiting peptidergic vesicles. Nat Neurosci 9, 896–900 (2006). https://doi.org/10.1038/nn1719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing