Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Netrins guide Drosophila commissural axons at short range

Abstract

Netrins are secreted axon guidance molecules required for commissure formation in a wide range of animal species, including Caenorhabditis elegans, Drosophila melanogaster and mice. They are generally thought to function as chemoattractants, acting at a distance to direct commissural axon growth toward the midline of the central nervous system. We show here, however, that D. melanogaster commissural axons still orient normally and reach the midline even in the complete absence of netrins, though some of them fail to cross the midline. Tethering endogenous netrin to the membrane selectively disrupts its long-range but not short-range activity, yet still allows normal commissure formation. We therefore propose that netrins act in commissural axon guidance as short-range cues that promote midline crossing, not as long-range chemoattractants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Either netrin is sufficient for commissure formation.
Figure 2: Axons orient and extend normally toward the midline in NetABΔ double mutants, but some fail to cross.
Figure 3: Tethering NetB to the membrane.
Figure 4: Membrane-tethered netrin functions in commissure formation.
Figure 5: Short- and long-range repulsion by NetA and NetB.
Figure 6: Tethering NetB to the membrane blocks long- but not short-range repulsion.

Similar content being viewed by others

References

  1. Yu, T.W. & Bargmann, C.I. Dynamic regulation of axon guidance. Nat. Neurosci. 4, 1169–1176 (2001).

    Article  CAS  Google Scholar 

  2. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  Google Scholar 

  3. Huber, A.B., Kolodkin, A.L., Ginty, D.D. & Cloutier, J.F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003).

    Article  CAS  Google Scholar 

  4. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  Google Scholar 

  5. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a wingless morphogen gradient. Cell 87, 833–844 (1996).

    Article  CAS  Google Scholar 

  6. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  Google Scholar 

  7. Strigini, M. & Cohen, S.M. A hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124, 4697–4705 (1997).

    CAS  PubMed  Google Scholar 

  8. Entchev, E.V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-beta homolog Dpp. Cell 103, 981–991 (2000).

    Article  CAS  Google Scholar 

  9. Teleman, A.A. & Cohen, S.M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    Article  CAS  Google Scholar 

  10. Briscoe, J., Chen, Y., Jessell, T.M. & Struhl, G. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291 (2001).

    Article  CAS  Google Scholar 

  11. Williams, P.H., Hagemann, A., Gonzalez-Gaitan, M. & Smith, J.C. Visualizing long-range movement of the morphogen Xnr2 in the Xenopus embryo. Curr. Biol. 14, 1916–1923 (2004).

    Article  CAS  Google Scholar 

  12. Belenkaya, T.Y. et al. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119, 231–244 (2004).

    Article  CAS  Google Scholar 

  13. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  Google Scholar 

  14. Ishii, N., Wadsworth, W.G., Stern, B.D., Culotti, J.G. & Hedgecock, E.M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873–881 (1992).

    Article  CAS  Google Scholar 

  15. Harris, R., Sabatelli, L.M. & Seeger, M.A. Guidance cues at the Drosophila CNS midline: identification and characterization of two Drosophila Netrin/UNC-6 homologs. Neuron 17, 217–228 (1996).

    Article  CAS  Google Scholar 

  16. Mitchell, K.J. et al. Genetic analysis of Netrin genes in Drosophila: Netrins guide CNS commissural axons and peripheral motor axons. Neuron 17, 203–215 (1996).

    Article  CAS  Google Scholar 

  17. Kennedy, T.E., Serafini, T., de la Torre, J.R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    Article  CAS  Google Scholar 

  18. Colamarino, S.A. & Tessier-Lavigne, M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81, 621–629 (1995).

    Article  CAS  Google Scholar 

  19. Hopker, V.H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  CAS  Google Scholar 

  20. Chan, S.S. et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996).

    Article  CAS  Google Scholar 

  21. Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    Article  CAS  Google Scholar 

  22. Kolodziej, P.A. et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197–204 (1996).

    Article  CAS  Google Scholar 

  23. Stein, E., Zou, Y., Poo, M. & Tessier-Lavigne, M. Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 291, 1976–1982 (2001).

    Article  CAS  Google Scholar 

  24. Leung-Hagesteijn, C. et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992).

    Article  CAS  Google Scholar 

  25. Hamelin, M., Zhou, Y., Su, M.W., Scott, I.M. & Culotti, J.G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 (1993).

    Article  CAS  Google Scholar 

  26. Leonardo, E.D. et al. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386, 833–838 (1997).

    Article  CAS  Google Scholar 

  27. Ackerman, S.L. et al. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386, 838–842 (1997).

    Article  CAS  Google Scholar 

  28. Keleman, K. & Dickson, B.J. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605–617 (2001).

    Article  CAS  Google Scholar 

  29. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).

    Article  CAS  Google Scholar 

  30. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  Google Scholar 

  31. Hedgecock, E.M., Culotti, J.G. & Hall, D.H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    Article  CAS  Google Scholar 

  32. Wadsworth, W.G., Bhatt, H. & Hedgecock, E.M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996).

    Article  CAS  Google Scholar 

  33. Winberg, M.L., Mitchell, K.J. & Goodman, C.S. Genetic analysis of the mechanisms controlling target selection: complementary and combinatorial functions of netrins, semaphorins, and IgCAMs. Cell 93, 581–591 (1998).

    Article  CAS  Google Scholar 

  34. Higashijima, S., Shishido, E., Matsuzaki, M. & Saigo, K. eagle, a member of the steroid receptor gene superfamily, is expressed in a subset of neuroblasts and regulates the fate of their putative progeny in the Drosophila CNS. Development 122, 527–536 (1996).

    CAS  PubMed  Google Scholar 

  35. Dittrich, R., Bossing, T., Gould, A.P., Technau, G.M. & Urban, J. The differentiation of the serotonergic neurons in the Drosophila ventral nerve cord depends on the combined function of the zinc finger proteins Eagle and Huckebein. Development 124, 2515–2525 (1997).

    CAS  PubMed  Google Scholar 

  36. Schmid, A., Chiba, A. & Doe, C.Q. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126, 4653–4689 (1999).

    CAS  PubMed  Google Scholar 

  37. Greco, V., Hannus, M. & Eaton, S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106, 633–645 (2001).

    Article  CAS  Google Scholar 

  38. Panakova, D., Sprong, H., Marois, E., Thiele, C. & Eaton, S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58–65 (2005).

    Article  CAS  Google Scholar 

  39. Charron, F., Stein, E., Jeong, J., McMahon, A.P. & Tessier-Lavigne,, M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113, 11–23 (2003).

    Article  CAS  Google Scholar 

  40. Augsburger, A., Schuchardt, A., Hoskins, S., Dodd, J. & Butler, S. BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24, 127–141 (1999).

    Article  CAS  Google Scholar 

  41. Butler, S.J. & Dodd, J. A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38, 389–401 (2003).

    Article  CAS  Google Scholar 

  42. Hao, J.C. et al. C. elegans Slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron 32, 25–38 (2001).

    Article  CAS  Google Scholar 

  43. de Anda, F.C. et al. Centrosome localization determines neuronal polarity. Nature 436, 704–708 (2005).

    Article  Google Scholar 

  44. Rong, Y.S. & Golic, K.G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000).

    Article  CAS  Google Scholar 

  45. Rong, Y.S. et al. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 16, 1568–1581 (2002).

    Article  CAS  Google Scholar 

  46. Patel, N.H. Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos. in Drosophila Melanogaster: Practical Uses in Cell and Molecular Biology (eds. Goldstein, L.S.B. & Fyrberg, E.A.) 445–487 (Academic Press, San Diego, 1994).

    Google Scholar 

  47. Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C.S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10, 409–426 (1993).

    Article  CAS  Google Scholar 

  48. Van Vactor, D., Sink, H., Fambrough, D., Tsoo, R. & Goodman, C.S. Genes that control neuromuscular specificity in Drosophila. Cell 73, 1137–1153 (1993).

    Article  CAS  Google Scholar 

  49. Bopp, D., Bell, L.R., Cline, T.W. & Schedl, P. Developmental distribution of female-specific Sex-lethal proteins in Drosophila melanogaster. Genes Dev. 5, 403–415 (1991).

    Article  CAS  Google Scholar 

  50. Bossing, T. & Technau, G.M. The fate of the CNS midline progenitors in Drosophila as revealed by a new method for single cell labelling. Development 120, 1895–1906 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Rickert and G. Technau for their skill, patience and hospitality in teaching M.B. how to perform DiI labeling; A. Graf and K. Paiha for technical assistance; and F. Schnorrer and G. Gilestro for comments on the manuscript. We also thank the Drosophila Genetic Resource Center in Kyoto and the Gene Disruption Project for P-element stocks. This work was supported by a grant from the Austrian Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J Dickson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Targeting NetB. (PDF 67 kb)

Supplementary Video 1

ato axons in wild-type embryos. Time-lapse of an ato-GAL4 UAS-mCD8-GFP embryo, showing ato sensory axons entering and arborizing within the CNS. The embryo was scanned at 90-second intervals, from stage 14 until stage 16 (total time 2:22:30). (MOV 2325 kb)

Supplementary Video 2

ato axons expressing Unc5 in NetAΔNetBmyc. embryos. Time-lapse of a NetAΔ NetBmyc. ato-GAL4 UAS-Unc5 UAS-mCD8-GFP embryo, showing ato sensory axons extending toward but not entering the CNS. The embryo was scanned at 90-second intervals, from stage 14 until stage 16 (total time 2:22:30). (MOV 2394 kb)

Supplementary Video 3

ato axons expressing Unc5 in NetAΔNetB™. embryos. Time-lapse of a NetAΔ NetB™. ato-GAL4 UAS-Unc5 UAS-mCD8-GFP embryo, showing ato sensory axons entering and arborizing within the CNS. The embryo was scanned at 90-second intervals, from stage 14 until stage 16 (total time 2:22:30). (MOV 2322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brankatschk, M., Dickson, B. Netrins guide Drosophila commissural axons at short range. Nat Neurosci 9, 188–194 (2006). https://doi.org/10.1038/nn1625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing