Bistability of cerebellar Purkinje cells modulated by sensory stimulation


A persistent change in neuronal activity after brief stimuli is a common feature of many neuronal microcircuits. This persistent activity can be sustained by ongoing reverberant network activity or by the intrinsic biophysical properties of individual cells. Here we demonstrate that rat and guinea pig cerebellar Purkinje cells in vivo show bistability of membrane potential and spike output on the time scale of seconds. The transition between membrane potential states can be bidirectionally triggered by the same brief current pulses. We also show that sensory activation of the climbing fiber input can switch Purkinje cells between the two states. The intrinsic nature of Purkinje cell bistability and its control by sensory input can be explained by a simple biophysical model. Purkinje cell bistability may have a key role in the short-term processing and storage of sensory information in the cerebellar cortex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spontaneous membrane potential bistability in Purkinje cells in vivo.
Figure 2: Membrane potential bistability is a specific feature of Purkinje cells within the cerebellar cortex.
Figure 3: Membrane potential bistability is reflected in spike output pattern in vivo.
Figure 4: Intrinsic origin of membrane potential bistability in vivo.
Figure 5: Climbing fiber input can trigger transitions between states.
Figure 6: Characterization of the complex spike–induced transitions in vivo.
Figure 7: Sensory-evoked complex spikes in Purkinje cells can trigger membrane potential bistability in vivo.
Figure 8: A model for bistability and state transitions.


  1. 1

    Fuster, J.M. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36, 61–78 (1973).

    CAS  Article  Google Scholar 

  2. 2

    McCormick, D.A. et al. Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb. Cortex 13, 1219–1231 (2003).

    Article  Google Scholar 

  3. 3

    Shu, Y., Hasenstaub, A. & McCormick, D.A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Camperi, M. & Wang, X.J. A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. J. Comput. Neurosci. 5, 383–405 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Marder, E., Abbott, L.F., Turrigiano, G.G., Liu, Z. & Golowasch, J. Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. USA 93, 13481–13486 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Llinas, R. & Sugimori, M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. (Lond.) 305, 171–195 (1980).

    CAS  Article  Google Scholar 

  7. 7

    Heyward, P., Ennis, M., Keller, A. & Shipley, M.T. Membrane bistability in olfactory bulb mitral cells. J. Neurosci. 21, 5311–5320 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Lee, R.H. & Heckman, C.J. Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J. Neurophysiol. 80, 583–593 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Egorov, A.V., Hamam, B.N., Fransen, E., Hasselmo, M.E. & Alonso, A.A. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Koulakov, A.A., Raghavachari, S., Kepecs, A. & Lisman, J.E. Model for a robust neural integrator. Nat. Neurosci. 5, 775–782 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Goldman, M.S., Levine, J.H., Major, G., Tank, D.W. & Seung, H.S. Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb. Cortex 13, 1185–1195 (2003).

    Article  Google Scholar 

  12. 12

    Loewenstein, Y. & Sompolinsky, H. Temporal integration by calcium dynamics in a model neuron. Nat. Neurosci. 6, 961–967 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Häusser, M. & Clark, B.A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

    Article  Google Scholar 

  14. 14

    Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984).

    Google Scholar 

  15. 15

    Williams, S.R., Christensen, S.R. Stuart, G.J. & Häusser, M. Membrane potential bistability is controlled by the hyperpolarization- activated current I(H) in rat cerebellar Purkinje neurons in vitro. J. Physiol. (Lond.) 539, 469–483 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Hartigan, J.A. & Hartigan, P.M. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).

    Article  Google Scholar 

  17. 17

    Chadderton, P., Margrie, T.W. & Häusser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Armstrong, D.M. & Rawson, J.A. Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J. Physiol. (Lond.) 289, 425–448 (1979).

    CAS  Article  Google Scholar 

  19. 19

    Jorntell, H. & Ekerot, C.F. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J. Neurosci. 23, 9620–9631 (2003).

    Article  Google Scholar 

  20. 20

    Brown, I.E. & Bower, J.M. Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum. J. Comp. Neurol. 429, 59–70 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Rapp, M., Segev, I. & Yarom, Y. Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. J. Physiol. (Lond.) 474, 101–118 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Chang, W., Strahlendorf, J.C. & Strahlendorf, H.K. Ionic contributions to the oscillatory firing activity of rat Purkinje cells in vitro. Brain Res. 614, 335–341 (1993).

    CAS  Article  Google Scholar 

  23. 23

    Hounsgaard, J. & Midtgaard, J. Intrinsic determinants of firing pattern in Purkinje cells of the turtle cerebellum in vitro. J. Physiol. (Lond.) 402, 731–749 (1988).

    CAS  Article  Google Scholar 

  24. 24

    Bell, C.C. & Grimm, R.J. Discharge properties of Purkinje cells recorded on single and double microelectrodes. J. Neurophysiol. 32, 1044–1055 (1969).

    CAS  Article  Google Scholar 

  25. 25

    Brookhart, J.M., Moruzzi, G. & Snider, R.S. Spike discharges of single units in the cerebellar cortex. J. Neurophysiol. 13, 465–486 (1950).

    CAS  Article  Google Scholar 

  26. 26

    McDevitt, C.J., Ebner, T.J. & Bloedel, J.R. The changes in Purkinje cell simple spike activity following spontaneous climbing fiber inputs. Brain Res. 237, 484–491 (1982).

    CAS  Article  Google Scholar 

  27. 27

    Granit, R. & Phillips, C.G. Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J. Physiol. (Lond.) 133, 520–547 (1956).

    CAS  Article  Google Scholar 

  28. 28

    Nacimiento, R.C. Spontaneous and evoked discharges of cerebellar Purkinje cells in the frog. in Neurobiology of Cerebellar Evolution and Development (ed. Llinas, R.) 373–395 (American Medical Assn., Chicago, 1969).

    Google Scholar 

  29. 29

    McCarley, R.W. & Hobson, J.A. Simple spike firing patterns of cat cerebellar Purkinje cells in sleep and waking. Electroencephalogr. Clin. Neurophysiol. 33, 471–483 (1972).

    CAS  Article  Google Scholar 

  30. 30

    Edgley, S.A. & Lidierth, M. Step-related discharges of Purkinje cells in the paravermal cortex of the cerebellar anterior lobe in the cat. J. Physiol. (Lond.) 401, 399–415 (1988).

    CAS  Article  Google Scholar 

  31. 31

    Hirata, Y. & Highstein, S.M. Analysis of the discharge pattern of floccular Purkinje cells in relation to vertical head and eye movement in the squirrel monkey. Prog. Brain Res. 124, 221–232 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Bauswein, E., Kolb, F.P. & Rubia, F.J. Cerebellar feedback signals of a passive hand movement in the awake monkey. Pflugers Arch. 402, 292–299 (1984).

    CAS  Article  Google Scholar 

  33. 33

    Kobayashi, Y. et al. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. J. Neurophysiol. 80, 832–848 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Williams, S.R., Toth, T.I., Turner, J.P., Hughes, S.W. & Crunelli, V. The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J. Physiol. (Lond.) 505, 689–705 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Rawson, J.A. & Tilokskulchai, K. Repetitive firing of cerebellar Purkinje cells in response to impulse in climbing fibre afferents. Neurosci. Lett. 25, 131–135 (1981).

    CAS  Article  Google Scholar 

  36. 36

    Sato, Y., Miura, A., Fushiki, H. & Kawasaki, T. Short-term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input. J. Neurophysiol. 68, 2051–2062 (1992).

    CAS  Article  Google Scholar 

  37. 37

    Rawson, J.A. & Tilokskulchai, K. Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fibre afferents. Neurosci. Lett. 25, 125–130 (1981).

    CAS  Article  Google Scholar 

  38. 38

    Ekerot, C.F. & Kano, M. Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res. 342, 357–360 (1985).

    CAS  Article  Google Scholar 

  39. 39

    Mahon, S., Deniau, J.M. & Charpier, S. Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cereb. Cortex 11, 360–373 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Rinzel, J. & Ermentrout, B. Analysis of Neural Excitability and Oscillations in Methods of Neuronal Modeling (eds. Koch, C. & Segev, I.) 251–291 (MIT Press, Cambridge, 1998).

    Google Scholar 

  41. 41

    Yuen, G.L., Hockberger, P.E. & Houk, J.C. Bistability in cerebellar Purkinje cell dendrites modelled with high- threshold calcium and delayed-rectifier potassium channels. Biol. Cybern. 73, 375–388 (1995).

    CAS  Article  Google Scholar 

  42. 42

    Genet, S. & Delord, B. A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in Purkinje cell dendrites. J. Neurophysiol. 88, 2430–2444 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Llinas, R. & Sugimori, M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lond.) 305, 197–213 (1980).

    CAS  Article  Google Scholar 

  44. 44

    Ebner, T.J. & Bloedel, J.R. Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. J. Neurophysiol. 45, 962–971 (1981).

    CAS  Article  Google Scholar 

  45. 45

    Midtgaard, J., Lasser-Ross, N. & Ross, W. Spatial distribution of Ca2+ influx in turtle Purkinje cell dendrites in vitro: role of a transient outward current. J. Neurophysiol. 70, 2455–2469 (1993).

    CAS  Article  Google Scholar 

  46. 46

    Wang, S.S., Denk, W. & Häusser, M. Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3, 1266–1273 (2000).

    CAS  Article  Google Scholar 

  47. 47

    Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498 (2002).

    CAS  Article  Google Scholar 

  48. 48

    Mann-Metzer, P. & Yarom, Y. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J. Neurosci. 19, 3298–3306 (1999).

    CAS  Article  Google Scholar 

Download references


We thank H. Meiri, E. Chorev and P. Mann-Metzer for excellent technical assistance, J.T. Davie for help with programming, and J.I. Simpson and T. Margrie for encouragement and helpful discussions. This work was supported by grants from the European Commission (M.H. and Y.Y.), Wellcome Trust (M.H and S.M), Gatsby Foundation (M.H), JSPS (K.K.), US-Israel BSF (Y.Y.), the Israel Science Foundation (Y.Y.), the Israel Science Foundation Center of Excellence 8006-00 (H.S.) and the Yeshaya Horowitz Association (Y.L.).

Author information



Corresponding authors

Correspondence to Yonatan Loewenstein or Séverine Mahon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Activation of h-current in cerebellar Purkinje cells in vivo. (PDF 520 kb)

Supplementary Fig. 2

A model of bistability demonstrates CF-evoked and spontaneous transitions. (PDF 263 kb)

Supplementary Note (PDF 115 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loewenstein, Y., Mahon, S., Chadderton, P. et al. Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci 8, 202–211 (2005).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing